Canales Jimena
Technol Cult. 2015 Jul;56(3):610-45. doi: 10.1353/tech.2015.0097.
How are fundamental constants, such as "c" for the speed of light, related to the technological environments that produce them? Relativistic cosmology, developed first by Albert Einstein, depended on military and commercial innovations in telecommunications. Prominent physicists (Hans Reichenbach, Max Born, Paul Langevin, Louis de Broglie, and Léon Brillouin, among others) worked in radio units during WWI and incorporated battlefield lessons into their research. Relativity physicists, working at the intersection of physics and optics by investigating light and electricity, responded to new challenges by developing a novel scientific framework. Ideas about lengths and solid bodies were overhauled because the old Newtonian mechanics assumed the possibility of "instantaneous signaling at a distance." Einstein's universe, where time and space dilated, where the shortest path between two points was often curved and non-Euclidean, followed the rules of electromagnetic "signal" transmission. For these scientists, light's constant speed in the absence of a gravitational field-a fundamental tenet of Einstein's theory-was a lesson derived from communication technologies.
诸如代表光速的“c”等基本常数与产生它们的技术环境有怎样的关系?由阿尔伯特·爱因斯坦首先发展起来的相对论宇宙学依赖于电信领域的军事和商业创新。杰出的物理学家(包括汉斯·赖兴巴赫、马克斯·玻恩、保罗·朗之万、路易·德布罗意和莱昂·布里渊等人)在第一次世界大战期间曾在无线电部队工作,并将战场经验融入到他们的研究中。相对论物理学家通过研究光和电,在物理学和光学的交叉领域开展工作,他们通过发展一种新颖的科学框架来应对新的挑战。关于长度和固体的概念被彻底革新,因为旧的牛顿力学假定了“远距离瞬时信号传输”的可能性。爱因斯坦的宇宙中,时间和空间会膨胀,两点之间的最短路径往往是弯曲的且是非欧几里得的,遵循电磁“信号”传输的规则。对这些科学家来说,光在没有引力场时的恒定速度——爱因斯坦理论的一个基本信条——是从通信技术中得到的经验。