Qiao Huijie, Lin Congtian, Jiang Zhigang, Ji Liqiang
Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
Sci Rep. 2015 Sep 21;5:14232. doi: 10.1038/srep14232.
We describe an algorithm that helps to predict potential distributional areas for species using presence-only records. The Marble Algorithm is a density-based clustering program based on Hutchinson's concept of ecological niches as multidimensional hypervolumes in environmental space. The algorithm characterizes this niche space using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. When MA is provided with a set of occurrence points in environmental space, the algorithm determines two parameters that allow the points to be grouped into several clusters. These clusters are used as reference sets describing the ecological niche, which can then be mapped onto geographic space and used as the potential distribution of the species. We used both virtual species and ten empirical datasets to compare MA with other distribution-modeling tools, including Bioclimate Analysis and Prediction System, Environmental Niche Factor Analysis, the Genetic Algorithm for Rule-set Production, Maximum Entropy Modeling, Artificial Neural Networks, Climate Space Models, Classification Tree Analysis, Generalised Additive Models, Generalised Boosted Models, Generalised Linear Models, Multivariate Adaptive Regression Splines and Random Forests. Results indicate that MA predicts potential distributional areas with high accuracy, moderate robustness, and above-average transferability on all datasets, particularly when dealing with small numbers of occurrences.
我们描述了一种算法,该算法有助于利用仅存在记录来预测物种的潜在分布区域。大理石算法是一种基于密度的聚类程序,它基于哈钦森将生态位概念视为环境空间中的多维超体积的理念。该算法使用带噪声的基于密度的空间聚类应用程序(DBSCAN)算法来表征这个生态位空间。当为大理石算法提供一组环境空间中的出现点时,该算法确定两个参数,这些参数可将这些点分组为几个聚类。这些聚类用作描述生态位的参考集,然后可以将其映射到地理空间并用作物种的潜在分布。我们使用虚拟物种和十个实证数据集将大理石算法与其他分布建模工具进行比较,这些工具包括生物气候分析与预测系统、环境生态位因子分析、规则集生成遗传算法、最大熵建模、人工神经网络、气候空间模型、分类树分析、广义相加模型、广义提升模型、广义线性模型、多元自适应回归样条和随机森林。结果表明,大理石算法在所有数据集上都能以高精度、适度稳健性和高于平均水平的可转移性预测潜在分布区域,尤其是在处理少量出现记录时。