Zhai Yunfeng, Baturina Olga, Ramaker David, Farquhar Erik, St-Pierre Jean, Swider-Lyons Karen
Hawaii Natural Energy Institute, University of Hawaii, Honolulu, Hawaii 96822, USA.
Chemistry Division, Naval Research Laboratory, Washington DC 20375-5342, USA.
J Phys Chem C Nanomater Interfaces. 2015 Sep 3;119(35):20328-20338. doi: 10.1021/acs.jpcc.5b06362.
The platinum electrocatalysts found in proton exchange membrane fuel cells are poisoned both reversibly and irreversibly by air pollutants and residual manufacturing contaminants. In this work, the poisoning of a Pt/C PEMFC cathode was probed by a trace of chlorobenzene in the air feed. Chlorobenzene inhibits the oxygen reduction reaction and causes significant cell performance loss. The performance loss is largely restored by neat air operation and potential cycling between 0.08 V and 1.2 V under H/N (anode/cathode). The analysis of emissions, in situ X-ray absorption spectroscopy and electrochemical impedance spectra show the chlorobenzene adsorption/reaction and molecular orientation on Pt surface depend on the electrode potential. At low potentials, chlorobenzene deposits either on top of adsorbed H atoms or on the Pt surface via the benzene ring and is converted to benzene (ca. 0.1 V) or cyclohexane (ca. 0 V) upon Cl removal. At potentials higher than 0.2 V, chlorobenzene binds to Pt via the Cl atom and can be converted to benzene (less than 0.3 V) or desorbed. Cl is created and remains in the membrane electrode assembly. Cl binds to the Pt surface much stronger than chlorobenzene, but can slowly be flushed out by liquid water.
质子交换膜燃料电池中发现的铂电催化剂会受到空气污染物和残留制造污染物的可逆和不可逆中毒。在这项工作中,通过在空气进料中加入微量氯苯来探究Pt/C质子交换膜燃料电池阴极的中毒情况。氯苯会抑制氧还原反应并导致电池性能显著下降。通过纯空气运行以及在H/N(阳极/阴极)条件下在0.08 V和1.2 V之间进行电位循环,性能损失在很大程度上得以恢复。排放分析、原位X射线吸收光谱和电化学阻抗谱表明,氯苯在铂表面的吸附/反应以及分子取向取决于电极电位。在低电位下,氯苯要么沉积在吸附的氢原子顶部,要么通过苯环沉积在铂表面,并在氯去除后转化为苯(约0.1 V)或环己烷(约0 V)。在高于0.2 V的电位下,氯苯通过氯原子与铂结合,并可转化为苯(低于0.3 V)或解吸。氯会产生并残留在膜电极组件中。氯与铂表面的结合比氯苯强得多,但可以被液态水缓慢冲洗掉。