Du X, Yao B, Gonzalez-Cortes S, Kuznetsov V L, AlMegren Hamid, Xiao T, Edwards P P
King Abdulaziz City of Science and Technology (KACST) - Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
Faraday Discuss. 2015;183:161-76. doi: 10.1039/c5fd00062a. Epub 2015 Sep 22.
The dehydrogenation of C3H8 in the presence of CO2 is an attractive catalytic route for C3H6 production. In studying the various possibilities to utilise CO2 to convert hydrocarbons using the sustainable energy source of solar thermal energy, thermodynamic calculations were carried out for the dehydrogenation of C3H8 using CO2for the process operating in the temperature range of 300-500 °C. Importantly, the results highlight the enhanced potential of C3H8 as compared to its lighter and heavier homologues (C2H6 and C4H10, respectively). To be utilised in this CO2 utilisation reaction the Gibbs free energy (ΔrGθm) of each reaction in the modelled, complete reacting system of the dehydrogenation of C3H8 in the presence of CO2 also indicate that further cracking of C3H6 will affect the ultimate yield and selectivity of the final products. In a parallel experimental study, catalytic tests of the dehydrogenation of C3H8 in the presence of CO2 over 5 wt%-Cr2O3/ZrO2 catalysts operating at 500 °C, atmospheric pressure, and for various C3H8 partial pressures and various overall GHSV (Gas Hourly Space Velocity) values. The results showed that an increase in the C3H8 partial pressure produced an inhibition of C3H8 conversion but, importantly, a promising enhancement of C3H6 selectivity. This phenomenon can be attributed to competitive adsorption on the catalyst between the generated C3H6 and inactivated C3H8, which inhibits any further cracking effect on C3H6 to produce by-products. As a comparison, the increase of the overall GHSV can also decrease the C3H8 conversion to a similar extent, but the further cracking of C3H6 cannot be limited.
在二氧化碳存在下丙烷脱氢是生产丙烯的一种有吸引力的催化途径。在研究利用二氧化碳和太阳能这种可持续能源来转化碳氢化合物的各种可能性时,对在300 - 500 °C温度范围内运行的丙烷脱氢过程进行了热力学计算。重要的是,结果突出了丙烷与其较轻和较重的同系物(分别为乙烷和丁烷)相比具有更大的潜力。为了在这种二氧化碳利用反应中得到应用,在模拟的丙烷在二氧化碳存在下脱氢的完整反应体系中,每个反应的吉布斯自由能(ΔrGθm)也表明,丙烯的进一步裂解会影响最终产物的最终产率和选择性。在一项平行的实验研究中,对在500 °C、大气压下,在5 wt%-Cr2O3/ZrO2催化剂上进行的丙烷在二氧化碳存在下的脱氢反应进行了催化测试,测试了不同的丙烷分压和不同的总气体时空速(GHSV)值。结果表明,丙烷分压的增加会抑制丙烷的转化,但重要的是,会显著提高丙烯的选择性。这种现象可归因于生成的丙烯和失活的丙烷在催化剂上的竞争吸附,这抑制了对丙烯的任何进一步裂解以产生副产物的作用。作为对比,总GHSV的增加也会在类似程度上降低丙烷的转化率,但无法限制丙烯的进一步裂解。