Bogstedt Anna, Groves Maria, Tan Keith, Narwal Rajesh, McFarlane Mary, Höglund Kina
AstraZeneca Translational Science Center, Personalized Healthcare & Biomarkers AstraZeneca R&D Innovative Medicines and Department of Clinical Neuroscience, Solna, Sweden; Science for Life Laboratory, Karolinska Institutet, Sweden.
Antibody Discovery and Protein Engineering, MedImmune Limited, Granta Park, Cambridge, UK.
J Alzheimers Dis. 2015;46(4):1091-101. doi: 10.3233/JAD-142988.
Utilizing decision making biomarkers in drug development requires thorough assay validation. Special considerations need to be taken into account when monitoring biomarkers using immunoassays in the presence of therapeutic antibodies. We have developed robust and sensitive assays to assess target engagement and proof of mechanism to support the clinical progression of a human monoclonal antibody against the neurotoxic amyloid-β (Aβ)42 peptide. Here we present the introduction of novel pre-treatment steps to ensure drug-tolerant immunoassays and describe the validation of the complete experimental procedures to measure total Aβ42 concentration (bound and unbound) in cerebrospinal fluid (CSF) and plasma, free Aβ42 concentration (unbound) in CSF, and Aβ40 concentration in CSF. The difference in composition of the matrices (CSF and plasma) and antigen levels therein, in combination with the hydrophobic properties of Aβ protein, adds to the complexity of validation. Monitoring pharmacodynamics of an Aβ42 specific monoclonal antibody in a non-human primate toxicology study using these assays, we demonstrated a 1500-fold and a 3000-fold increase in total Aβ42 in plasma, a 4-fold and 8-fold increase in total Aβ42 in CSF together with a 95% and 96% reduction of free Aβ42 in CSF following weekly intravenous injections of 10 mg/kg and 100 mg/kg, respectively. Levels of Aβ40 were unchanged. The accuracy of these data is supported by previous pre-clinical studies as well as predictive pharmacokinetic/pharmacodynamics modeling. In contrast, when analyzing the same non-human primate samples excluding the pre-treatment steps, we were not able to distinguish between free and total Aβ42. Our data clearly demonstrate the importance of thorough evaluation of antibody interference and appropriate validation to monitor different types of biomarkers in the presence of a therapeutic antibody.
在药物研发中使用决策生物标志物需要对检测方法进行全面验证。在存在治疗性抗体的情况下使用免疫测定法监测生物标志物时,需要考虑一些特殊因素。我们开发了强大且灵敏的检测方法,以评估靶点结合情况和作用机制证据,从而支持一种抗神经毒性淀粉样β(Aβ)42肽的人源单克隆抗体的临床进展。在此,我们介绍了新的预处理步骤,以确保免疫测定法对药物具有耐受性,并描述了完整实验程序的验证过程,该过程用于测量脑脊液(CSF)和血浆中的总Aβ42浓度(结合和未结合)、CSF中的游离Aβ42浓度(未结合)以及CSF中的Aβ40浓度。基质(CSF和血浆)组成及其抗原水平的差异,再加上Aβ蛋白的疏水特性,增加了验证的复杂性。使用这些检测方法在非人灵长类动物毒理学研究中监测Aβ42特异性单克隆抗体的药效学,我们发现,在分别每周静脉注射10mg/kg和100mg/kg后,血浆中总Aβ42分别增加了1500倍和3000倍,CSF中总Aβ42分别增加了4倍和8倍,同时CSF中游离Aβ42分别降低了95%和96%。Aβ40的水平没有变化。这些数据的准确性得到了先前临床前研究以及预测性药代动力学/药效学模型的支持。相比之下,在分析相同的非人灵长类动物样本时,如果不采用预处理步骤,我们无法区分游离Aβ42和总Aβ42。我们的数据清楚地表明,在存在治疗性抗体的情况下,全面评估抗体干扰和进行适当验证对于监测不同类型生物标志物的重要性。