Nance Michael E, Duan Dongsheng
Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, Missouri.
Hum Gene Ther. 2015 Dec;26(12):786-800. doi: 10.1089/hum.2015.107. Epub 2015 Oct 15.
Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.
杜兴氏肌肉营养不良症(DMD)是一种X连锁的进行性儿童肌病,由基因组中最大的基因之一——抗肌萎缩蛋白基因突变引起。其特征是骨骼肌和心肌变性及功能障碍,导致心脏和/或呼吸衰竭。腺相关病毒(AAV)是一种极具前景的基因治疗载体。AAV基因治疗在治疗多种遗传性疾病方面取得了前所未有的临床成功。然而,AAV基因治疗DMD仍然是一项重大挑战。AAV介导的DMD基因治疗面临的障碍包括难以在AAV载体中包装全长抗肌萎缩蛋白编码序列、全身基因递送的必要性、对抗肌萎缩蛋白和AAV衣壳的免疫反应,以及从动物模型转化到人类患者的物种特异性障碍。衣壳工程旨在通过合理设计和/或强制进化来改善病毒载体特性。在本综述中,我们讨论如何使用最先进的AAV衣壳工程技术来克服基于AAV的DMD基因治疗中的障碍。