Maity Arnab K, Metta-Magaña Alejandro J, Fortier Skye
Department of Chemistry, University of Texas at El Paso , El Paso, Texas 79968, United States.
Inorg Chem. 2015 Oct 19;54(20):10030-41. doi: 10.1021/acs.inorgchem.5b01815. Epub 2015 Sep 30.
Addition of 1 equiv of LiN═C(t)Bu2 or LiN═Ad (Ad = 2-adamantyl) to the aryl carbodiimide C(NDipp)2 (Dipp = 2,6-diisopropylphenyl) readily generates the lithium ketimine-guanidinates Li(THF)2[(X)C(NDipp)2] (X = N═C(t)Bu2 (1-(t)Bu), N═Ad (1-Ad)) in excellent yields. These new ligands can be readily metalated with iron to give the N,N'-bidentate chelates [{(X)C(NDipp)2}FeBr]2 (X = N═C(t)Bu2 (5-(t)Bu), N═Ad (5-Ad)), in which the ketimines behave as noncoordinating backbone substituents. In an effort to understand the potential electronic contributions of the ketimine group to the ligand architecture, a thorough structural and electronic study was conducted comparing the features and properties of 5-(t)Bu and 5-Ad to their guanidinate and amidinate analogues [{(X)C(NDipp)2}FeBr]2 (X = (i)Pr2N (6), (t)Bu (7)). Solid-state structural analyses indicate little electronic contribution from the N-ketimine nitrogen atom, while solution-phase electronic absorption spectra of 5-(t)Bu and 5-Ad are qualitatively similar to the amidinate complex 7. Yet, electrochemical measurements do show the donor properties of the ketimine-guanidinate in 5-(t)Bu to be intermediate between its guanidinate and amidinate counterparts in 6 and 7. Preliminary reactivity studies also show that the reduction chemistry of 5-(t)Bu diverges significantly from that of 6 and 7. Treatment of 5-(t)Bu with excess magnesium or 1 equiv of KC8 leads to the formation of the Fe(I)-Fe(I) complex [{μ-((t)Bu2C═N)C(NDipp)2}2Fe2] (11), which possesses an exceedingly short Fe═Fe bond (2.1516(5) Å), while neither 6 nor 7 forms dinuclear complexes upon reduction. This result demonstrates that ketimine-guanidinates do not simply behave as amidinate variants but can contribute to distinctive metal chemistry of their own.
向芳基碳二亚胺C(NDipp)₂(Dipp = 2,6 - 二异丙基苯基)中加入1当量的LiN═C(t)Bu₂或LiN═Ad(Ad = 2 - 金刚烷基),很容易以优异的产率生成锂酮亚胺 - 胍基化物Li(THF)₂[(X)C(NDipp)₂](X = N═C(t)Bu₂ (1-(t)Bu),N═Ad (1-Ad))。这些新配体可以很容易地与铁金属化,得到N,N'-双齿螯合物[{(X)C(NDipp)₂}FeBr]₂(X = N═C(t)Bu₂ (5-(t)Bu),N═Ad (5-Ad)),其中酮亚胺作为非配位主链取代基。为了理解酮亚胺基团对配体结构的潜在电子贡献,进行了一项全面的结构和电子研究,比较了5-(t)Bu和5-Ad与其胍基化物和脒基化物类似物[{(X)C(NDipp)₂}FeBr]₂(X = (i)Pr₂N (6),(t)Bu (7))的特征和性质。固态结构分析表明,N - 酮亚胺氮原子的电子贡献很小,而5-(t)Bu和5-Ad的溶液相电子吸收光谱在定性上与脒基络合物7相似。然而,电化学测量确实表明,5-(t)Bu中酮亚胺 - 胍基化物的给体性质介于其胍基化物和脒基化物对应物6和7之间。初步反应性研究还表明,5-(t)Bu的还原化学与6和7有很大不同。用过量镁或1当量的KC₈处理5-(t)Bu会导致形成Fe(I)-Fe(I)络合物[{μ-((t)Bu₂C═N)C(NDipp)₂}₂Fe₂] (11),其具有极短的Fe═Fe键(2.1516(5) Å),而6和7在还原时都不会形成双核络合物。这一结果表明,酮亚胺 - 胍基化物不仅仅表现为脒基化物的变体,而是可以有其独特的金属化学性质。