School of Environment and Natural Resources, Renmin University of China , Beijing 100872, China.
State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University , Beijing 100084, China.
Environ Sci Technol. 2015 Oct 20;49(20):12388-94. doi: 10.1021/acs.est.5b02520. Epub 2015 Oct 7.
A series of CeMoOx catalysts with different surface Ce/Mo ratios was synthesized by a coprecipitation method via changing precipitation pH value. The surface basicity on selective catalytic reduction (SCR) catalysts (CeMoOx and VMo/Ti) was characterized and correlated to the durability and activity of catalyst for simultaneous elimination of NOx and Hg(0). The pH value in the preparation process affected the surface concentrations of Ce and Mo, the Brunauer-Emmett-Teller (BET) specific surface area, and the acid-base properties over the CeMoOx catalysts. The O 1s X-ray photoelectron spectroscopy (XPS) spectra and CO2-temperature programmed desorption (TPD) suggested that the surface basicity increased as the pH value increased. The existence of strong basic sites contributed to the deactivation effect of HCl over the VMo/Ti and CeMoOx catalysts prepared at pH = 12. For the CeMoOx catalysts prepared at pH = 9 and 6, the appearance of surface molybdena species replaced the surface -OH, and the existence of appropriate medium-strength basic sites contributed to their resistance to HCl poisoning in the SCR reaction. Moreover, these sites facilitated the adsorption and activation of HCl and enhanced Hg(0) oxidation. On the other hand, the inhibitory effect of NH3 on Hg(0) oxidation was correlated with the competitive adsorption of NH3 and Hg(0) on acidic surface sites. Therefore, acidic surface sites may play an important role in Hg(0) adsorption. The characterization and balance of basicity and acidity of an SCR catalyst is believed to be helpful in preventing deactivation by acid gas in the SCR reaction and simultaneous Hg(0) oxidation.
通过改变沉淀 pH 值,采用共沉淀法合成了一系列具有不同表面 Ce/Mo 比的 CeMoOx 催化剂。通过选择性催化还原(SCR)催化剂(CeMoOx 和 VMo/Ti)的表面碱性来对其进行了表征,并将其与催化剂的耐久性和活性相关联,用于同时消除 NOx 和 Hg(0)。制备过程中的 pH 值影响 CeMoOx 催化剂的表面 Ce 和 Mo 浓度、BET 比表面积和酸碱性质。O 1s X 射线光电子能谱(XPS)和 CO2 程序升温脱附(TPD)表明,表面碱性随 pH 值的增加而增加。强碱性位的存在导致了 HCl 在 VMo/Ti 和 pH = 12 下制备的 CeMoOx 催化剂上的失活效应。对于 pH = 9 和 6 下制备的 CeMoOx 催化剂,表面钼物种的出现取代了表面-OH,适当的中强度碱性位的存在有助于其在 SCR 反应中抵抗 HCl 中毒。此外,这些位促进了 HCl 的吸附和活化,增强了 Hg(0)的氧化。另一方面,NH3 对 Hg(0)氧化的抑制作用与 NH3 和 Hg(0)在酸性表面位上的竞争吸附有关。因此,酸性表面位可能在 Hg(0)吸附中起重要作用。SCR 催化剂的碱性和酸性的特性和平衡有助于防止 SCR 反应中酸性气体的失活和同时的 Hg(0)氧化。