3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal; Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, CH-8093 Zürich, Switzerland.
Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, CH-8093 Zürich, Switzerland; Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria 3122, Australia; Industrial Research Institute Swinburne, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria 3122, Australia.
Acta Biomater. 2015 Dec;28:64-75. doi: 10.1016/j.actbio.2015.09.028. Epub 2015 Oct 9.
The use of biomaterials to direct osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of osteogenic supplements is thought to be part of the next generation of orthopedic implants. We previously engineered surface-roughness gradients of average roughness (Ra) varying from the sub-micron to the micrometer range (∼0.5-4.7 μm), and mean distance between peaks (RSm) gradually varying from ∼214 μm to 33 μm. Here we have screened the ability of such surface-gradients of polycaprolactone to influence the expression of alkaline phosphatase (ALP), collagen type 1 (COL1) and mineralization by hMSCs cultured in dexamethasone (Dex)-deprived osteogenic induction medium (OIM) and in basal growth medium (BGM). Ra∼1.53 μm/RSm∼79 μm in Dex-deprived OI medium, and Ra∼0.93 μm/RSm∼135 μm in BGM consistently showed higher effectiveness at supporting the expression of the osteogenic markers ALP, COL1 and mineralization, compared to the tissue culture polystyrene (TCP) control in complete OIM. The superior effectiveness of specific surface-roughness revealed that this strategy may be used as a compelling alternative to soluble osteogenic inducers in orthopedic applications featuring the clinically relevant biodegradable polymer polycaprolactone.
Biodegradable polymers, such as polycaprolactone (PCL), are promising materials in the field of tissue engineering and regenerative medicine, which aims at creating viable options to replace permanent orthopedic implants. The material, cells, and growth-stimulating factors are often referred to as the key components of engineered tissues. In this article, we studied the hypothesis of specific surface modification of PCL being capable of inducing mesenchymal stem cell differentiation in bone cells in the absence of cell-differentiating factors. The systematic investigation of the linearly varying surface-roughness gradient showed that an average PCL roughness of 0.93 μm alone can serve as a compelling alternative to soluble osteogenic inducers in orthopedic applications featuring the clinically relevant biodegradable polymer polycaprolactone.
人们认为,在没有成骨补充剂的情况下,使用生物材料来指导人骨髓间充质干细胞(hMSCs)的成骨分化,是下一代骨科植入物的一部分。我们之前设计了表面粗糙度从亚微米到微米范围(约 0.5-4.7μm)的平均粗糙度(Ra)和峰间平均距离(RSm)逐渐变化的梯度,范围从约 214μm 到 33μm。在这里,我们筛选了这种聚己内酯的表面梯度在去甲泼尼龙剥夺的成骨诱导培养基(OIM)和基础生长培养基(BGM)中培养 hMSC 时,对碱性磷酸酶(ALP)、胶原蛋白 1(COL1)表达和矿化的影响。在去甲泼尼龙剥夺的 OI 培养基中,Ra∼1.53μm/RSm∼79μm,在 BGM 中 Ra∼0.93μm/RSm∼135μm,与完全 OIM 中的组织培养聚苯乙烯(TCP)对照相比,在支持成骨标志物 ALP、COL1 和矿化的表达方面更有效。特定表面粗糙度的优越性表明,这种策略可能成为骨科应用中具有临床相关可生物降解聚合物聚己内酯的可溶性成骨诱导剂的替代品。
可生物降解聚合物,如聚己内酯(PCL),在组织工程和再生医学领域是很有前途的材料,旨在创造可行的选择来替代永久性骨科植入物。材料、细胞和生长刺激因子通常被称为工程组织的关键组成部分。在本文中,我们研究了 PCL 的特定表面改性能够在没有细胞分化因子的情况下诱导间充质干细胞向成骨细胞分化的假设。对线性变化表面粗糙度梯度的系统研究表明,单独的 PCL 平均粗糙度为 0.93μm 就可以作为骨科应用中具有临床相关可生物降解聚合物聚己内酯的可溶性成骨诱导剂的替代品。