Suppr超能文献

基于子空间的方法的差分子空间及其推广。

Difference subspace and its generalization for subspace-based methods.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2015 Nov;37(11):2164-77. doi: 10.1109/TPAMI.2015.2408358.

Abstract

Subspace-based methods are known to provide a practical solution for image set-based object recognition. Based on the insight that local shape differences between objects offer a sensitive cue for recognition, this paper addresses the problem of extracting a subspace representing the difference components between class subspaces generated from each set of object images independently of each other. We first introduce the difference subspace (DS), a novel geometric concept between two subspaces as an extension of a difference vector between two vectors, and describe its effectiveness in analyzing shape differences. We then generalize it to the generalized difference subspace (GDS) for multi-class subspaces, and show the benefit of applying this to subspace and mutual subspace methods, in terms of recognition capability. Furthermore, we extend these methods to kernel DS (KDS) and kernel GDS (KGDS) by a nonlinear kernel mapping to deal with cases involving larger changes in viewing direction. In summary, the contributions of this paper are as follows: 1) a DS/KDS between two class subspaces characterizes shape differences between the two respectively corresponding objects, 2) the projection of an input vector onto a DS/KDS realizes selective visualization of shape differences between objects, and 3) the projection of an input vector or subspace onto a GDS/KGDS is extremely effective at extracting differences between multiple subspaces, and therefore improves object recognition performance. We demonstrate validity through shape analysis on synthetic and real images of 3D objects as well as extensive comparison of performance on classification tests with several related methods; we study the performance in face image classification on the Yale face database B+ and the CMU Multi-PIE database, and hand shape classification of multi-view images.

摘要

基于子空间的方法被认为是解决基于图像集的目标识别问题的一种实用方法。基于局部形状差异是识别的敏感线索的观点,本文解决了从独立的每一组目标图像中生成的类子空间之间提取表示差异分量的子空间的问题。我们首先引入差分子空间(DS),这是两个子空间之间的一个新的几何概念,是两个向量之间的差向量的扩展,并描述了它在分析形状差异方面的有效性。然后,我们将其推广到多类子空间的广义差分子空间(GDS),并从识别能力的角度展示了将其应用于子空间和相互子空间方法的好处。此外,我们通过非线性核映射将这些方法扩展到核 DS(KDS)和核 GDS(KGDS),以处理视角变化较大的情况。总之,本文的贡献如下:1)两个类子空间之间的 DS/KDS 分别刻画了两个对应对象之间的形状差异,2)将输入向量投影到 DS/KDS 上实现了对象之间形状差异的选择性可视化,3)将输入向量或子空间投影到 GDS/KGDS 上非常有效地提取多个子空间之间的差异,从而提高了目标识别性能。我们通过对 3D 对象的合成和真实图像的形状分析以及与几种相关方法的性能比较证明了其有效性;我们研究了在 Yale 人脸数据库 B+和 CMU Multi-PIE 数据库上的人脸图像分类以及多视角图像的手形分类中的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验