Suppr超能文献

核糖体病:全身性过程,组织特异性缺陷。

Ribosomopathies: Global process, tissue specific defects.

作者信息

Yelick Pamela C, Trainor Paul A

机构信息

Tufts University ; Boston, MA USA.

Stowers Institute ; Kansas City, MO USA ; University of Kansas Medical Center ; Kansas City, KS USA.

出版信息

Rare Dis. 2015 Apr 1;3(1):e1025185. doi: 10.1080/21675511.2015.1025185. eCollection 2015.

Abstract

Disruptions in ribosomal biogenesis would be expected to have global and in fact lethal effects on a developing organism. However, mutations in ribosomal protein genes have been shown in to exhibit tissue specific defects. This seemingly contradictory finding - that globally expressed genes thought to play fundamental housekeeping functions can in fact exhibit tissue and cell type specific functions - provides new insight into roles for ribosomes, the protein translational machinery of the cell, in regulating normal development and disease. Furthermore it illustrates the surprisingly dynamic nature of processes regulating cell type specific protein translation. In this review, we discuss our current knowledge of a variety of ribosomal protein mutations associated with human disease, and models to better understand the molecular mechanisms associated with each. We use specific examples to emphasize both the similarities and differences between the effects of various human ribosomal protein mutations. Finally, we discuss areas of future study that are needed to further our understanding of the role of ribosome biogenesis in normal development, and possible approaches that can be used to treat debilitating ribosomopathy diseases.

摘要

核糖体生物合成的中断预计会对发育中的生物体产生全局性甚至致命的影响。然而,核糖体蛋白基因突变已被证明会表现出组织特异性缺陷。这一看似矛盾的发现——那些被认为发挥基本看家功能的全局表达基因实际上可以表现出组织和细胞类型特异性功能——为核糖体(细胞的蛋白质翻译机器)在调节正常发育和疾病中的作用提供了新的见解。此外,它还说明了调节细胞类型特异性蛋白质翻译过程惊人的动态性质。在这篇综述中,我们讨论了目前对与人类疾病相关的各种核糖体蛋白突变的了解,以及用于更好地理解每种突变相关分子机制的模型。我们使用具体例子来强调各种人类核糖体蛋白突变效应之间的异同。最后,我们讨论了未来研究的领域,这些领域需要进一步加深我们对核糖体生物合成在正常发育中的作用的理解,以及可用于治疗使人衰弱的核糖体病的可能方法。

相似文献

1
Ribosomopathies: Global process, tissue specific defects.
Rare Dis. 2015 Apr 1;3(1):e1025185. doi: 10.1080/21675511.2015.1025185. eCollection 2015.
2
The Contributions of the Ribosome Biogenesis Protein Utp5/WDR43 to Craniofacial Development.
J Dent Res. 2016 Oct;95(11):1214-20. doi: 10.1177/0022034516651077. Epub 2016 May 24.
3
Expression of ribosomopathy genes during Xenopus tropicalis embryogenesis.
BMC Dev Biol. 2016 Oct 26;16(1):38. doi: 10.1186/s12861-016-0138-5.
4
Ribosomopathies: how a common root can cause a tree of pathologies.
Dis Model Mech. 2015 Sep;8(9):1013-26. doi: 10.1242/dmm.020529.
5
Ribosomopathies: New Therapeutic Perspectives.
Cells. 2020 Sep 11;9(9):2080. doi: 10.3390/cells9092080.
6
Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy.
Signal Transduct Target Ther. 2021 Aug 30;6(1):323. doi: 10.1038/s41392-021-00728-8.
7
Cancer Biogenesis in Ribosomopathies.
Cells. 2019 Mar 11;8(3):229. doi: 10.3390/cells8030229.
8
Ribosomopathies: Old Concepts, New Controversies.
Trends Genet. 2019 Oct;35(10):754-767. doi: 10.1016/j.tig.2019.07.004. Epub 2019 Jul 31.
9
Probing the mechanisms underlying human diseases in making ribosomes.
Biochem Soc Trans. 2016 Aug 15;44(4):1035-44. doi: 10.1042/BST20160064.
10
Growth control and ribosomopathies.
Curr Opin Genet Dev. 2013 Feb;23(1):63-71. doi: 10.1016/j.gde.2013.02.001. Epub 2013 Mar 13.

引用本文的文献

2
Emerging roles for the nucleolus in development and stem cells.
Development. 2025 May 1;152(9). doi: 10.1242/dev.204696. Epub 2025 May 14.
3
Proteomics-based characterization of ribosome heterogeneity in adult mouse organs.
Cell Mol Life Sci. 2025 Apr 24;82(1):175. doi: 10.1007/s00018-025-05708-7.
4
Impacts of ribosomal RNA sequence variation on gene expression and phenotype.
Philos Trans R Soc Lond B Biol Sci. 2025 Mar 6;380(1921):20230379. doi: 10.1098/rstb.2023.0379.
7
Impaired phase separation and nucleolar functions in hiPSC models of -related ribosomopathies.
iScience. 2024 Jul 1;27(8):110430. doi: 10.1016/j.isci.2024.110430. eCollection 2024 Aug 16.
9
Alcohol exposure suppresses ribosome biogenesis and causes nucleolar stress in cranial neural crest cells.
PLoS One. 2024 Jun 28;19(6):e0304557. doi: 10.1371/journal.pone.0304557. eCollection 2024.

本文引用的文献

1
Loss of function mutations in RPL27 and RPS27 identified by whole-exome sequencing in Diamond-Blackfan anaemia.
Br J Haematol. 2015 Mar;168(6):854-64. doi: 10.1111/bjh.13229. Epub 2014 Nov 25.
2
3D-FISH analysis reveals chromatid cohesion defect during interphase in Roberts syndrome.
Mol Cytogenet. 2014 Sep 30;7(1):59. doi: 10.1186/s13039-014-0059-6. eCollection 2014.
3
TNF-mediated inflammation represses GATA1 and activates p38 MAP kinase in RPS19-deficient hematopoietic progenitors.
Blood. 2014 Dec 11;124(25):3791-8. doi: 10.1182/blood-2014-06-584656. Epub 2014 Sep 30.
4
Current insights into inherited bone marrow failure syndromes.
Korean J Pediatr. 2014 Aug;57(8):337-44. doi: 10.3345/kjp.2014.57.8.337. Epub 2014 Aug 25.
5
Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications.
Med Res Rev. 2015 Mar;35(2):225-85. doi: 10.1002/med.21327. Epub 2014 Aug 28.
6
Clinical phenotype and genetic analysis of RPS19, RPL5, and RPL11 genes in Greek patients with Diamond Blackfan Anemia.
Pediatr Blood Cancer. 2014 Dec;61(12):2249-55. doi: 10.1002/pbc.25183. Epub 2014 Aug 17.
7
L-Leucine improves the anaemia in models of Diamond Blackfan anaemia and the 5q- syndrome in a TP53-independent way.
Br J Haematol. 2014 Nov;167(4):524-528. doi: 10.1111/bjh.13069. Epub 2014 Aug 7.
9
Roberts syndrome: A deficit in acetylated cohesin leads to nucleolar dysfunction.
Rare Dis. 2014 Jan 21;2:e27743. doi: 10.4161/rdis.27743. eCollection 2014.
10
Diamond-Blackfan anemia with mandibulofacial dystostosis is heterogeneous, including the novel DBA genes TSR2 and RPS28.
Am J Med Genet A. 2014 Sep;164A(9):2240-9. doi: 10.1002/ajmg.a.36633. Epub 2014 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验