Darke P L, Leu C T, Davis L J, Heimbach J C, Diehl R E, Hill W S, Dixon R A, Sigal I S
Department of Molecular Biology, Merck, Sharp and Dohme Research Laboratories, West Point, Pennsylvania 19486.
J Biol Chem. 1989 Feb 5;264(4):2307-12.
The protease of human immunodeficiency virus has been expressed in Escherichia coli and purified to apparent homogeneity. Immunoreactivity toward anti-protease peptide sera copurified with an activity that cleaved the structural polyprotein gag p55 and the peptide corresponding to the sequence gag 128-135. The enzyme expressed as a nonfusion protein exhibits proteolytic activity with a pH optimum of 5.5 and is inhibited by the aspartic protease inhibitor pepstatin with a Ki of 1.1 microM. Replacement of the conserved residue Asp-25 with an Asn residue eliminates proteolytic activity. Analysis of the minimal peptide substrate size indicates that 7 amino acids are required for efficient peptide cleavage. Size exclusion chromatography is consistent with a dimeric enzyme and circular dichroism spectra of the purified enzyme are consistent with a proposed structure of the protease (Pearl, L.H., and Taylor, W.R. (1987) Nature 329, 351-354). These data support the classification of the human immunodeficiency virus protease as an aspartic protease, likely to be structurally homologous with the well characterized family that includes pepsin and renin.