Rajković Jelena, Poreba Marcin, Caglič Dejan, Vidmar Robert, Wilk Aleksandra, Borowik Agata, Salvesen Guy, Turk Vito, Drag Marcin, Turk Boris
Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia.
Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
J Biol Chem. 2015 Nov 20;290(47):28231-28244. doi: 10.1074/jbc.M115.687764. Epub 2015 Oct 7.
The genome of the parasite Trypanosoma cruzi encodes two copies of autophagy-related cysteine proteases, Atg4.1 and Atg4.2. T. cruzi autophagin-2 (TcAtg4.2) carries the majority of proteolytic activity and is responsible for processing Atg8 proteins near the carboxyl terminus, exposing a conserved glycine. This enables progression of autophagy and differentiation of the parasite, which is required for successful colonization of humans. The mechanism of substrate hydrolysis by Atg4 was found to be highly conserved among the species as critical mutations in the TcAtg4.2, including mutation of the conserved Gly-244 residue in the hinge region enabling flexibility of the regulatory loop, and deletion of the regulatory loop, completely abolished processing capacity of the mutants. Using the positional scanning-substrate combinatorial library (PS-SCL) we determined that TcAtg4.2 tolerates a broad spectrum of amino acids in the P4 and P3 positions, similar to the human orthologue autophagin-1 (HsAtg4B). In contrast, both human and trypanosome Atg4 orthologues exhibited exclusive preference for aromatic amino acid residues in the P2 position, and for Gly in the P1 position, which is absolutely conserved in the natural Atg8 substrates. Using an extended P2 substrate library, which also included the unnatural amino acid cyclohexylalanine (Cha) derivative of Phe, we generated highly selective tetrapeptide substrates acetyl-Lys-Lys-Cha-Gly-AFC (Ac-KKChaG-AFC) and acetyl-Lys-Thr-Cha-Gly-AFC (Ac-KTChaG-AFC). Althoughthese substrates were cleaved by cathepsins, making them unsuitable for analysis of complex cellular systems, they were recognized exclusively by TcAtg4.2, but not by HsAtg4B nor by the structurally related human proteases SENP1, SENP2, and UCH-L3.
克氏锥虫寄生虫的基因组编码两种自噬相关半胱氨酸蛋白酶,即Atg4.1和Atg4.2。克氏锥虫自噬蛋白-2(TcAtg4.2)具有大部分蛋白水解活性,负责在羧基末端附近加工Atg8蛋白,暴露出一个保守的甘氨酸。这使得自噬得以进行以及寄生虫得以分化,而这是成功感染人类所必需的。研究发现,Atg4水解底物的机制在物种间高度保守,因为TcAtg4.2中的关键突变,包括铰链区保守的Gly-244残基的突变(该突变使调节环具有灵活性)以及调节环的缺失,完全消除了突变体的加工能力。使用位置扫描底物组合文库(PS-SCL),我们确定TcAtg4.2在P4和P3位置能耐受多种氨基酸,这与人类同源物自噬蛋白-1(HsAtg4B)相似。相比之下,人类和锥虫的Atg4同源物在P2位置都只对芳香族氨基酸残基有偏好,在P1位置则偏好甘氨酸,这在天然Atg8底物中是绝对保守的。使用一个扩展的P2底物文库,其中还包括苯丙氨酸的非天然氨基酸环己基丙氨酸(Cha)衍生物,我们生成了高度选择性的四肽底物乙酰-Lys-Lys-Cha-Gly-AFC(Ac-KKChaG-AFC)和乙酰-Lys-Thr-Cha-Gly-AFC(Ac-KTChaG-AFC)。尽管这些底物会被组织蛋白酶切割,使其不适用于复杂细胞系统的分析,但它们只被TcAtg4.2识别,而不被HsAtg4B以及结构相关的人类蛋白酶SENP1、SENP2和UCH-L3识别。