Fang Yin, Ni Yongliang, Leo Sin-Yen, Wang Bingchen, Basile Vito, Taylor Curtis, Jiang Peng
Department of Chemical Engineering, University of Florida , Gainesville, Florida 32611, United States.
Department of Mechanical and Aerospace Engineering, University of Florida , Gainesville, Florida 32611, United States.
ACS Appl Mater Interfaces. 2015 Oct 28;7(42):23650-9. doi: 10.1021/acsami.5b07220. Epub 2015 Oct 14.
Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.
在此,我们报道了一种单步直接写入技术,用于在新型压力响应形状记忆聚合物(SMP)上制作三维(3D)大孔光子晶体图案。这种方法整合了两个通常不相交的不同领域:成熟的模板纳米制造和形状记忆材料。在一个不寻常的形状记忆“冷”编程过程中,由自组装胶体晶体模板化的聚合物大孔的周期性阵列被挤压成无序阵列。在环境条件下,使用宏观和纳米工具(如铅笔或纳米压痕器)进行直接写入,可以触发原始大孔光子晶格的恢复。有趣的是,这种形状记忆无序 - 有序转变是可逆的,光子晶体图案可以被擦除并再生数百次,有望制造可重构/可重写的纳米光学器件。通过对重要工艺参数的基础研究,包括尖端材料、触发变形大孔恢复的临界压力和写入速度,以及可以直接写入SMP膜上的最小特征尺寸,获得了对直接写入过程中横向剪切应力引起的塌陷大孔形状记忆恢复的定量见解。除了在光子晶体器件中的直接应用外,这些对各种机械应力敏感的智能机械变色SMPs还可以实现重要的技术应用,从发色应力和冲击传感器到可重写的高密度光学数据存储介质。