Suppr超能文献

孕早期子痫前期的最佳预测:多标志物算法、风险概况及其序贯应用的比较

Optimal first trimester preeclampsia prediction: a comparison of multimarker algorithm, risk profiles and their sequential application.

作者信息

Gabbay-Benziv R, Oliveira N, Baschat A A

机构信息

Helen Schneider Hospital for Women, Rabin Medical Center, PetachTikva; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Department of Obstetrics and Gynecology, Maternidade Dr. Alfredo da Costa, Lisbon, Portugal.

出版信息

Prenat Diagn. 2016 Jan;36(1):34-9. doi: 10.1002/pd.4707. Epub 2015 Nov 19.

Abstract

OBJECTIVE

To compare performance of multimarker algorithm, risk profiles and their sequential application in prediction of preeclampsia and determining potential intervention targets.

STUDY DESIGN

Maternal characteristics, ultrasound variables and serum biomarkers were collected prospectively at first trimester. Univariate analysis identified preeclampsia associated variables followed by logistic regression analysis to determine the prediction rule. Combined characteristics of the cardiovascular, metabolic and the personal risk factors were compared to the multimarker algorithm and the sequential application of both methods.

RESULTS

Out of 2433 women, 108 developed preeclampsia (4.4%). Probability scores considering nulliparity, prior preeclampsia, body mass index, diastolic blood pressure and placental growth factor had an area under the receiver operating characteristic curve 0.784 (95% CI = 0.721-0.847). While the multimarker algorithm had the lowest false negative rate, sequential application of cardiovascular and metabolic risk profiles in screen positives reduced false positives by 26% and identified blood pressure and metabolic risk in 49/54 (91%) women with subsequent preeclampsia as treatable risk factors.

CONCLUSION

Sequential application of a multimarker algorithm followed by determination of treatable risk factors in screen positive women is the optimal approach for first trimester preeclampsia prediction and identification of women that may benefit from targeted metabolic or cardiovascular treatment. © 2015 John Wiley & Sons, Ltd.

摘要

目的

比较多标志物算法、风险概况及其序贯应用在预测子痫前期和确定潜在干预靶点方面的表现。

研究设计

前瞻性收集孕早期的母亲特征、超声变量和血清生物标志物。单因素分析确定与子痫前期相关的变量,随后进行逻辑回归分析以确定预测规则。将心血管、代谢和个人风险因素的综合特征与多标志物算法以及两种方法的序贯应用进行比较。

结果

在2433名女性中,108名发生了子痫前期(4.4%)。考虑初产情况、既往子痫前期、体重指数、舒张压和胎盘生长因子的概率评分在受试者工作特征曲线下的面积为0.784(95%CI = 0.721 - 0.847)。虽然多标志物算法的假阴性率最低,但在筛查阳性者中序贯应用心血管和代谢风险概况可将假阳性率降低26%,并在49/54(91%)随后发生子痫前期的女性中识别出血压和代谢风险作为可治疗的风险因素。

结论

对于孕早期子痫前期的预测以及识别可能从靶向代谢或心血管治疗中获益的女性,最佳方法是先应用多标志物算法,然后在筛查阳性女性中确定可治疗的风险因素。© 2015约翰威立国际出版公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验