Suppr超能文献

FACT通过与保守肽基序结合H2A-H2B破坏核小体结构。

FACT Disrupts Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs.

作者信息

Kemble David J, McCullough Laura L, Whitby Frank G, Formosa Tim, Hill Christopher P

机构信息

Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA.

Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA.

出版信息

Mol Cell. 2015 Oct 15;60(2):294-306. doi: 10.1016/j.molcel.2015.09.008. Epub 2015 Oct 8.

Abstract

FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C termini of each subunit. Mutations throughout these regions affect binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions.

摘要

FACT是Spt16和Pob3的异源二聚体,是一种必需的组蛋白伴侣。我们发现,对FACT功能至关重要的H2A-H2B结合活性存在于每个亚基C末端附近的短酸性区域。这些区域的突变会影响结合并导致从轻度到致死的相关表型,每个结构域中最大的个体贡献意外地来自一个芳香族残基和附近的一个羧酸盐残基。Spt16和Pob3在H2A-H2B上结合重叠位点,并且Spt16-Pob3异源二聚体同时结合两个H2A-H2B二聚体,这与核小体成分的化学计量相同。Spt16:H2A-H2B晶体结构解释了生化和遗传数据,提供了Pob3结合的模型,并暗示了一种我们通过生化方法证实的FACT重组机制。此外,与ANP32E和Swr1与H2A.Z-H2B结合的意外相似性表明,不同的H2A-H2B伴侣使用共同的组蛋白结合和调节核小体功能的机制。

相似文献

1
FACT Disrupts Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs.
Mol Cell. 2015 Oct 15;60(2):294-306. doi: 10.1016/j.molcel.2015.09.008. Epub 2015 Oct 8.
2
Residues in the Nucleosome Acidic Patch Regulate Histone Occupancy and Are Important for FACT Binding in .
Genetics. 2017 Jul;206(3):1339-1348. doi: 10.1534/genetics.117.201939. Epub 2017 May 3.
4
5
Functional roles of the DNA-binding HMGB domain in the histone chaperone FACT in nucleosome reorganization.
J Biol Chem. 2018 Apr 20;293(16):6121-6133. doi: 10.1074/jbc.RA117.000199. Epub 2018 Mar 7.
7
A highly conserved region within H2B is important for FACT to act on nucleosomes.
Mol Cell Biol. 2014 Feb;34(3):303-14. doi: 10.1128/MCB.00478-13. Epub 2013 Nov 18.
8
Structure of the Spt16 middle domain reveals functional features of the histone chaperone FACT.
J Biol Chem. 2013 Apr 12;288(15):10188-94. doi: 10.1074/jbc.C113.451369. Epub 2013 Feb 15.
9
FACT caught in the act of manipulating the nucleosome.
Nature. 2020 Jan;577(7790):426-431. doi: 10.1038/s41586-019-1820-0. Epub 2019 Nov 27.
10
Integrated molecular mechanism directing nucleosome reorganization by human FACT.
Genes Dev. 2016 Mar 15;30(6):673-86. doi: 10.1101/gad.274183.115. Epub 2016 Mar 10.

引用本文的文献

1
Beyond Chaperoning: The Multifaceted Role of FACT in Chromatin Transactions.
Int J Mol Sci. 2025 May 28;26(11):5176. doi: 10.3390/ijms26115176.
2
Subnucleosome preference of human chromatin remodeller SMARCAD1.
Nature. 2025 Jun 4. doi: 10.1038/s41586-025-09100-0.
3
FACT weakens the nucleosomal barrier to transcription and preserves its integrity by forming a hexasome-like intermediate.
Mol Cell. 2025 Jun 5;85(11):2097-2109.e8. doi: 10.1016/j.molcel.2025.05.002. Epub 2025 May 23.
5
Interactions with multiple inner kinetochore proteins determine mitotic localization of FACT.
J Cell Biol. 2025 May 5;224(5). doi: 10.1083/jcb.202412042. Epub 2025 Mar 17.
6
Abo1 ATPase facilitates the dissociation of FACT from chromatin.
Nucleic Acids Res. 2025 Feb 8;53(4). doi: 10.1093/nar/gkae1229.
7
Histone variants: The bricks that fit differently.
J Biol Chem. 2025 Jan;301(1):108048. doi: 10.1016/j.jbc.2024.108048. Epub 2024 Dec 4.
8
A replisome-associated histone H3-H4 chaperone required for epigenetic inheritance.
Cell. 2024 Sep 5;187(18):5010-5028.e24. doi: 10.1016/j.cell.2024.07.006. Epub 2024 Aug 1.
10
DNA Repair in Nucleosomes: Insights from Histone Modifications and Mutants.
Int J Mol Sci. 2024 Apr 16;25(8):4393. doi: 10.3390/ijms25084393.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Histone chaperones: assisting histone traffic and nucleosome dynamics.
Annu Rev Biochem. 2014;83:487-517. doi: 10.1146/annurev-biochem-060713-035536.
3
Anp32e, a higher eukaryotic histone chaperone directs preferential recognition for H2A.Z.
Cell Res. 2014 Apr;24(4):389-99. doi: 10.1038/cr.2014.30. Epub 2014 Mar 11.
4
The catalytic subunit of the SWR1 remodeler is a histone chaperone for the H2A.Z-H2B dimer.
Mol Cell. 2014 Feb 6;53(3):498-505. doi: 10.1016/j.molcel.2014.01.010.
5
ANP32E is a histone chaperone that removes H2A.Z from chromatin.
Nature. 2014 Jan 30;505(7485):648-53. doi: 10.1038/nature12922. Epub 2014 Jan 22.
6
Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing.
Nucleus. 2013 Nov-Dec;4(6):443-9. doi: 10.4161/nucl.27235. Epub 2013 Dec 5.
7
SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes.
Cell. 2013 Sep 12;154(6):1246-56. doi: 10.1016/j.cell.2013.08.043.
9
Structural basis of histone H2A-H2B recognition by the essential chaperone FACT.
Nature. 2013 Jul 4;499(7456):111-4. doi: 10.1038/nature12242. Epub 2013 May 22.
10
Histone chaperone FACT action during transcription through chromatin by RNA polymerase II.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7654-9. doi: 10.1073/pnas.1222198110. Epub 2013 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验