Cechmanek Paula B, Hehr Carrie L, McFarlane Sarah
Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, Canada.
Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, Canada.
Mol Cell Neurosci. 2015 Nov;69:30-40. doi: 10.1016/j.mcn.2015.10.001. Epub 2015 Oct 9.
To grow out to contact target neurons an axon uses its distal tip, the growth cone, as a sensor of molecular cues that help the axon make appropriate guidance decisions at a series of choice points along the journey. In the developing visual system, the axons of the output cells of the retina, the retinal ganglion cells (RGCs), cross the brain midline at the optic chiasm. Shortly after, they grow past the brain entry point of the optic nerve arising from the contralateral eye, and extend dorso-caudally through the diencephalon towards their optic tectum target. Using the developing visual system of the experimentally amenable model Xenopus laevis, we find that RGC axons are normally prevented from entering the contralateral optic nerve. This mechanism requires the activity of a Rho-associated kinase, Rock, known to function downstream of a number of receptors that recognize cues that guide axons. Pharmacological inhibition of Rock in an in vivo brain preparation causes mis-entry of many RGC axons into the contralateral optic nerve, and this defect is partially phenocopied by selective disruption of Rock signaling in RGC axons. These data implicate Rock downstream of a molecular mechanism that is critical for RGC axons to be able to ignore a domain, the optic nerve, which they previously found attractive.
为了延伸出去与目标神经元建立联系,轴突利用其远端末梢——生长锥,作为分子信号的感受器,这些信号有助于轴突在其行程中的一系列选择点做出适当的导向决策。在发育中的视觉系统中,视网膜的输出细胞——视网膜神经节细胞(RGCs)的轴突在视交叉处穿过脑中线。此后不久,它们生长越过来自对侧眼睛的视神经进入脑的入口点,并通过间脑向背尾侧延伸,朝向它们的视顶盖目标。利用易于实验操作的非洲爪蟾模型的发育中的视觉系统,我们发现RGC轴突通常被阻止进入对侧视神经。这种机制需要一种Rho相关激酶Rock的活性,已知该激酶在许多识别引导轴突信号的受体下游发挥作用。在体内脑制备中对Rock进行药理学抑制会导致许多RGC轴突错误地进入对侧视神经,并且这种缺陷部分地通过RGC轴突中Rock信号的选择性破坏而被模拟。这些数据表明Rock在一种分子机制的下游,该机制对于RGC轴突能够忽略一个它们之前觉得有吸引力的区域——视神经至关重要。