Nakajima Yumiko, Tsuchimoto Takahiro, Chang Yung-Hung, Takeuchi Katsuhiko, Ozawa Fumiyuki
Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
Dalton Trans. 2016 Feb 7;45(5):2079-84. doi: 10.1039/c5dt03166d. Epub 2015 Oct 12.
Bond activation of silyl compounds, assisted by the cooperative action of non-coordinating anions, is achieved using Cu(I) complexes coordinated with a PNP-pincer type phosphaalkene ligand, [Cu(X)(BPEP-Ph)] (X = PF6 (1a), SbF6 (1b); BPEP-Ph = 2,6-bis[1-phenyl-2-(2,4,6-tri-tert-butylphenyl)-2-phosphaethenyl]pyridine). Complexes 1a and 1b react with Me3SiCN to form Me3SiF and Cu(i) cyanide complexes of the formula [Cu(CN-EF5)(BPEP-Ph)] (E = P (2a), Sb (2b)), in which the CN ligand is associated with the EF5 group arising from EF6(-). Formation of the intermediary isonitrile complex Cu(CNSiMe3)(BPEP-Ph)SbF6(-) (3b) is confirmed by its isolation. Thus, a two-step reaction process involving coordination of Me3SiCN, followed by nucleophilic attack of SbF6(-) on the silicon atom of 3b is established for the conversion of 1b to 2b. Complex 1b cleaves the H-Si bond of PhMe2SiH as well. The isolation and structural identification of Cu(BPEP-Ph)BAr(F)4(-) (1c) (BAr(F)4 = B{3,5-(CF3)2C6H3}4) as a rare example of a T-shaped, three-coordinated Cu(i) complex is reported.