da Silva Lima Camilo Henrique, de Alencastro Ricardo Bicca, Kaiser Carlos Roland, de Souza Marcus Vinícius Nora, Rodrigues Carlos Rangel, Albuquerque Magaly Girão
Graduate Program in Chemistry, Institute of Chemistry (Instituto de Química), Federal University of Rio de Janeiro (Universidade Federal do Rio de Janeiro, UFRJ), 21949-900 Rio de Janeiro, RJ, Brazil.
Oswaldo Cruz Foundation (Fundação Osvaldo Cruz, FioCruz), Institute of Pharmaceutical Technology (Instituto de Tecnologia em Fármacos, FarManguinhos), 21041-250 Rio de Janeiro, RJ, Brazil.
Int J Mol Sci. 2015 Oct 7;16(10):23695-722. doi: 10.3390/ijms161023695.
Molecular dynamics (MD) simulations of 12 aqueous systems of the NADH-dependent enoyl-ACP reductase from Mycobacterium tuberculosis (InhA) were carried out for up to 20-40 ns using the GROMACS 4.5 package. Simulations of the holoenzyme, holoenzyme-substrate, and 10 holoenzyme-inhibitor complexes were conducted in order to gain more insight about the secondary structure motifs of the InhA substrate-binding pocket. We monitored the lifetime of the main intermolecular interactions: hydrogen bonds and hydrophobic contacts. Our MD simulations demonstrate the importance of evaluating the conformational changes that occur close to the active site of the enzyme-cofactor complex before and after binding of the ligand and the influence of the water molecules. Moreover, the protein-inhibitor total steric (ELJ) and electrostatic (EC) interaction energies, related to Gly96 and Tyr158, are able to explain 80% of the biological response variance according to the best linear equation, pKi=7.772-0.1885×Gly96+0.0517×Tyr158 (R²=0.80; n=10), where interactions with Gly96, mainly electrostatic, increase the biological response, while those with Tyr158 decrease. These results will help to understand the structure-activity relationships and to design new and more potent anti-TB drugs.
使用GROMACS 4.5软件包,对结核分枝杆菌NADH依赖型烯酰-ACP还原酶(InhA)的12个水性体系进行了长达20 - 40纳秒的分子动力学(MD)模拟。为了更深入了解InhA底物结合口袋的二级结构基序,对全酶、全酶-底物以及10种全酶-抑制剂复合物进行了模拟。我们监测了主要分子间相互作用的寿命:氢键和疏水接触。我们的MD模拟证明了评估配体结合前后酶-辅因子复合物活性位点附近发生的构象变化以及水分子影响的重要性。此外,根据最佳线性方程pKi = 7.772 - 0.1885×Gly96 + 0.0517×Tyr158(R² = 0.80;n = 10),与Gly96和Tyr158相关的蛋白质-抑制剂总空间(ELJ)和静电(EC)相互作用能能够解释80%的生物学反应差异,其中与Gly96的相互作用(主要是静电作用)增强生物学反应,而与Tyr158的相互作用则降低生物学反应。这些结果将有助于理解构效关系并设计新的、更有效的抗结核药物。