Gao Quan Q, Wyatt Eugene, Goldstein Jeff A, LoPresti Peter, Castillo Lisa M, Gazda Alec, Petrossian Natalie, Earley Judy U, Hadhazy Michele, Barefield David Y, Demonbreun Alexis R, Bönnemann Carsten, Wolf Matthew, McNally Elizabeth M
J Clin Invest. 2015 Nov 2;125(11):4186-95. doi: 10.1172/JCI82768. Epub 2015 Oct 12.
Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations.
外显子跳跃使用反义寡核苷酸来治疗遗传疾病。用于外显子跳跃的反义寡核苷酸旨在绕过靶RNA中的过早终止密码子,并恢复阅读框破坏。目前正在对患有杜兴氏肌营养不良症且有肌营养不良蛋白基因突变的人类进行外显子跳跃测试。对于杜兴氏肌营养不良症,外显子跳跃的理论依据来自对具有自然发生的肌营养不良蛋白基因突变的患者的观察,这些突变产生了内部缺失但部分功能正常的肌营养不良蛋白。我们现在通过测试跨膜蛋白γ-肌聚糖的内部框内截短是否具有功能,扩大了外显子跳跃的潜力。我们通过删除大部分细胞外结构域,产生了一种内部截短的γ-肌聚糖蛋白,我们将其称为Mini-Gamma。在果蝇模型、异源细胞表达研究以及缺乏γ-肌聚糖的转基因小鼠中,Mini-Gamma在纠正γ-肌聚糖缺失方面提供了功能和病理益处。我们建立了一种人类肌肉疾病的细胞模型,并表明在编码突变型人类γ-肌聚糖的RNA中可以诱导多个外显子跳跃。由于Mini-Gamma代表γ-肌聚糖中7个编码外显子中的4个被去除,这种方法为治疗大多数γ-肌聚糖基因突变患者提供了一种可行的策略。