Suppr超能文献

神经冲动通过动作电位机制的不确定性传播

Uncertainty Propagation in Nerve Impulses Through the Action Potential Mechanism.

作者信息

Torres Valderrama Aldemar, Witteveen Jeroen, Navarro Maria, Blom Joke

机构信息

CWI, Amsterdam, Science Park 123, 1098 XG, Amsterdam, The Netherlands.

Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.

出版信息

J Math Neurosci. 2015 Dec;5(1):3. doi: 10.1186/2190-8567-5-3. Epub 2015 Jan 12.

Abstract

We investigate the propagation of probabilistic uncertainty through the action potential mechanism in nerve cells. Using the Hodgkin-Huxley (H-H) model and Stochastic Collocation on Sparse Grids, we obtain an accurate probabilistic interpretation of the deterministic dynamics of the transmembrane potential and gating variables. Using Sobol indices, out of the 11 uncertain parameters in the H-H model, we unravel two main uncertainty sources, which account for more than 90 % of the fluctuations in neuronal responses, and have a direct biophysical interpretation. We discuss how this interesting feature of the H-H model allows one to reduce greatly the probabilistic degrees of freedom in uncertainty quantification analyses, saving CPU time in numerical simulations and opening possibilities for probabilistic generalisation of other deterministic models of great importance in physiology and mathematical neuroscience.

摘要

我们研究了概率不确定性在神经细胞动作电位机制中的传播。通过使用霍奇金 - 赫胥黎(H-H)模型和稀疏网格上的随机配置方法,我们获得了跨膜电位和门控变量确定性动力学的精确概率解释。利用索伯尔指数,在H-H模型的11个不确定参数中,我们揭示了两个主要的不确定性来源,它们占神经元反应波动的90%以上,并且具有直接的生物物理学解释。我们讨论了H-H模型的这一有趣特性如何能够在不确定性量化分析中极大地减少概率自由度,在数值模拟中节省CPU时间,并为生理学和数学神经科学中其他重要的确定性模型的概率推广开辟可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/414d/4602021/4874e387af36/13408_2014_52_Fig1_HTML.jpg

相似文献

1
Uncertainty Propagation in Nerve Impulses Through the Action Potential Mechanism.
J Math Neurosci. 2015 Dec;5(1):3. doi: 10.1186/2190-8567-5-3. Epub 2015 Jan 12.
2
Probabilistic solvers enable a straight-forward exploration of numerical uncertainty in neuroscience models.
J Comput Neurosci. 2022 Nov;50(4):485-503. doi: 10.1007/s10827-022-00827-7. Epub 2022 Aug 6.
3
Thinking about the nerve impulse: A critical analysis of the electricity-centered conception of nerve excitability.
Prog Neurobiol. 2018 Oct;169:172-185. doi: 10.1016/j.pneurobio.2018.06.009. Epub 2018 Jul 4.
5
A note on the asymptotic reduction of the Hodgkin-Huxley equations for nerve impulses.
Bull Math Biol. 2005 Sep;67(5):947-55. doi: 10.1016/j.bulm.2004.11.007.
6
A stochastic collocation approach for parabolic PDEs with random domain deformations.
Comput Math Appl. 2021 Jul 1;93:32-49. doi: 10.1016/j.camwa.2021.04.005. Epub 2021 Apr 15.
7
Efficiency of analytical and sampling-based uncertainty propagation in intensity-modulated proton therapy.
Phys Med Biol. 2017 Jun 26;62(14):5790-5807. doi: 10.1088/1361-6560/aa6ec5.
8
Uncertainty analysis of ventricular mechanics using the probabilistic collocation method.
IEEE Trans Biomed Eng. 2012 Aug;59(8):2171-9. doi: 10.1109/TBME.2012.2198473. Epub 2012 May 9.
10
A hybrid collocation-perturbation approach for PDEs with random domains.
Adv Comput Math. 2021 Jun;47(3). doi: 10.1007/s10444-021-09859-6. Epub 2021 May 2.

引用本文的文献

1
Uncertainpy: A Python Toolbox for Uncertainty Quantification and Sensitivity Analysis in Computational Neuroscience.
Front Neuroinform. 2018 Aug 14;12:49. doi: 10.3389/fninf.2018.00049. eCollection 2018.
2
A global sensitivity analysis approach for morphogenesis models.
BMC Syst Biol. 2015 Nov 21;9:85. doi: 10.1186/s12918-015-0222-7.

本文引用的文献

1
Managing heterogeneity in the study of neural oscillator dynamics.
J Math Neurosci. 2012 Mar 14;2(1):5. doi: 10.1186/2190-8567-2-5.
3
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
4
Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons.
Neuroscience. 2001;107(1):13-24. doi: 10.1016/s0306-4522(01)00344-x.
5
Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons.
J Neurophysiol. 2000 Sep;84(3):1488-96. doi: 10.1152/jn.2000.84.3.1488.
6
Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo.
J Neurophysiol. 1999 Apr;81(4):1531-47. doi: 10.1152/jn.1999.81.4.1531.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验