Suppr超能文献

基于ω 测度的忆阻耦合神经网络的滞后同步。

Lag Synchronization of Memristor-Based Coupled Neural Networks via ω-Measure.

出版信息

IEEE Trans Neural Netw Learn Syst. 2016 Mar;27(3):686-97. doi: 10.1109/TNNLS.2015.2480784. Epub 2015 Oct 8.

Abstract

This paper deals with the lag synchronization problem of memristor-based coupled neural networks with or without parameter mismatch using two different algorithms. Firstly, we consider the memristor-based neural networks with parameter mismatch, lag complete synchronization cannot be achieved due to parameter mismatch, the concept of lag quasi-synchronization is introduced. Based on the ω-measure method and generalized Halanay inequality, the error level is estimated, a new lag quasi-synchronization scheme is proposed to ensure that coupled memristor-based neural networks are in a state of lag synchronization with an error level. Secondly, by constructing Lyapunov functional and applying common Halanary inequality, several lag complete synchronization criteria for the memristor-based neural networks with parameter match are given, which are easy to verify. Finally, two examples are given to illustrate the effectiveness of the proposed lag quasi-synchronization or lag complete synchronization criteria, which well support theoretical results.

摘要

本文针对具有或不具有参数失配的基于忆阻器的耦合神经网络的滞后同步问题,使用两种不同的算法进行了研究。首先,我们考虑了具有参数失配的基于忆阻器的神经网络,由于参数失配,不能实现滞后完全同步,因此引入了滞后准同步的概念。基于ω-测度方法和广义 Halanay 不等式,估计了误差水平,提出了一种新的滞后准同步方案,以确保耦合基于忆阻器的神经网络处于具有误差水平的滞后同步状态。其次,通过构造 Lyapunov 函数并应用常见的 Halanary 不等式,给出了参数匹配的基于忆阻器的神经网络的滞后完全同步的几个准则,这些准则易于验证。最后,通过两个实例验证了所提出的滞后准同步或滞后完全同步准则的有效性,很好地支持了理论结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验