Boltz Horst-Holger, Kierfeld Jan
Physics Department, TU Dortmund University, 44221 Dortmund, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):033003. doi: 10.1103/PhysRevE.92.033003. Epub 2015 Sep 4.
Soft elastic capsules which are driven through a viscous fluid undergo shape deformation coupled to their motion. We introduce an iterative solution scheme which couples hydrodynamic boundary integral methods and elastic shape equations to find the stationary axisymmetric shape and the velocity of an elastic capsule moving in a viscous fluid at low Reynolds numbers. We use this approach to systematically study dynamical shape transitions of capsules with Hookean stretching and bending energies and spherical rest shape sedimenting under the influence of gravity or centrifugal forces. We find three types of possible axisymmetric stationary shapes for sedimenting capsules with fixed volume: a pseudospherical state, a pear-shaped state, and buckled shapes. Capsule shapes are controlled by two dimensionless parameters, the Föppl-von-Kármán number characterizing the elastic properties and a Bond number characterizing the driving force. For increasing gravitational force the spherical shape transforms into a pear shape. For very large bending rigidity (very small Föppl-von-Kármán number) this transition is discontinuous with shape hysteresis. The corresponding transition line terminates, however, in a critical point, such that the discontinuous transition is not present at typical Föppl-von-Kármán numbers of synthetic capsules. In an additional bifurcation, buckled shapes occur upon increasing the gravitational force. This type of instability should be observable for generic synthetic capsules. All shape bifurcations can be resolved in the force-velocity relation of sedimenting capsules, where up to three capsule shapes with different velocities can occur for the same driving force. All three types of possible axisymmetric stationary shapes are stable with respect to rotation during sedimentation. Additionally, we study capsules pushed or pulled by a point force, where we always find capsule shapes to transform smoothly without bifurcations.
在粘性流体中驱动的软弹性胶囊会发生与运动相关的形状变形。我们引入了一种迭代求解方案,该方案将流体动力学边界积分方法和弹性形状方程相结合,以找到在低雷诺数下在粘性流体中运动的弹性胶囊的静止轴对称形状和速度。我们使用这种方法系统地研究了具有胡克拉伸和弯曲能量以及球形静止形状的胶囊在重力或离心力影响下沉降时的动态形状转变。我们发现对于具有固定体积的沉降胶囊,有三种可能的轴对称静止形状:伪球形状态、梨形状态和屈曲形状。胶囊形状由两个无量纲参数控制,表征弹性特性的弗普尔 - 冯·卡门数和表征驱动力的邦德数。随着重力增加,球形会转变为梨形。对于非常大的弯曲刚度(非常小的弗普尔 - 冯·卡门数),这种转变是不连续的,存在形状滞后现象。然而,相应的转变线在一个临界点处终止,使得在合成胶囊的典型弗普尔 - 冯·卡门数下不存在不连续转变。在另一个分岔中,随着重力增加会出现屈曲形状。这种不稳定性对于一般的合成胶囊应该是可观察到的。所有形状分岔都可以在沉降胶囊的力 - 速度关系中得到解决,在相同驱动力下,可能会出现多达三种具有不同速度的胶囊形状。所有三种可能的轴对称静止形状在沉降过程中对于旋转都是稳定的。此外,我们研究了由点力推动或拉动的胶囊,在这种情况下我们总是发现胶囊形状会平滑转变而不会出现分岔。