Suppr超能文献

急性缺氧期间使用乙酰唑胺可改善人脑的组织氧合。

Acetazolamide during acute hypoxia improves tissue oxygenation in the human brain.

作者信息

Wang Kang, Smith Zachary M, Buxton Richard B, Swenson Erik R, Dubowitz David J

机构信息

Center for Functional MRI, Department of Radiology, University of California, San Diego, California; School of Medicine, University of California, San Diego, California; and.

Center for Functional MRI, Department of Radiology, University of California, San Diego, California;

出版信息

J Appl Physiol (1985). 2015 Dec 15;119(12):1494-500. doi: 10.1152/japplphysiol.00117.2015. Epub 2015 Oct 15.

Abstract

Low doses of the carbonic anhydrase inhibitor acetazolamide provides accelerated acclimatization to high-altitude hypoxia and prevention of cerebral and other symptoms of acute mountain sickness. We previously observed increases in cerebral O2 metabolism (CMRO2 ) during hypoxia. In this study, we investigate whether low-dose oral acetazolamide (250 mg) reduces this elevated CMRO2 and in turn might improve cerebral tissue oxygenation (PtiO2 ) during acute hypoxia. Six normal human subjects were exposed to 6 h of normobaric hypoxia with and without acetazolamide prophylaxis. We determined CMRO2 and cerebral PtiO2 from MRI measurements of cerebral blood flow (CBF) and cerebral venous O2 saturation. During normoxia, low-dose acetazolamide resulted in no significant change in CBF, CMRO2 , or PtiO2 . During hypoxia, we observed increases in CBF [48.5 (SD 12.4) (normoxia) to 65.5 (20.4) ml·100 ml(-1)·min(-1) (hypoxia), P < 0.05] and CMRO2 [1.54 (0.19) to 1.79 (0.25) μmol·ml(-1)·min(-1), P < 0.05] and a dramatic decline in PtiO2 [25.0 to 11.4 (2.7) mmHg, P < 0.05]. Acetazolamide prophylaxis mitigated these rises in CBF [53.7 (20.7) ml·100 ml(-1)·min(-1) (hypoxia + acetazolamide)] and CMRO2 [1.41 (0.09) μmol·ml(-1)·min(-1) (hypoxia + acetazolamide)] associated with acute hypoxia but also reduced O2 delivery [6.92 (1.45) (hypoxia) to 5.60 (1.14) mmol/min (hypoxia + acetazolamide), P < 0.05]. The net effect was improved cerebral tissue PtiO2 during acute hypoxia [11.4 (2.7) (hypoxia) to 16.5 (3.0) mmHg (hypoxia + acetazolamide), P < 0.05]. In addition to its renal effect, low-dose acetazolamide is effective at the capillary endothelium, and we hypothesize that local interruption in cerebral CO2 excretion accounts for the improvements in CMRO2 and ultimately in cerebral tissue oxygenation during hypoxia. This study suggests a potentially pivotal role of cerebral CO2 and pH in modulating CMRO2 and PtiO2 during acute hypoxia.

摘要

低剂量的碳酸酐酶抑制剂乙酰唑胺可加速对高原低氧的适应,并预防急性高原病的脑部及其他症状。我们之前观察到低氧期间脑氧代谢(CMRO2)增加。在本研究中,我们调查低剂量口服乙酰唑胺(250毫克)是否能降低这种升高的CMRO2,进而改善急性低氧期间的脑组织氧合(PtiO2)。六名正常人类受试者在有和没有乙酰唑胺预防的情况下暴露于6小时的常压低氧环境。我们通过磁共振成像测量脑血流量(CBF)和脑静脉氧饱和度来确定CMRO2和脑组织PtiO2。在常氧期间,低剂量乙酰唑胺导致CBF、CMRO2或PtiO2无显著变化。在低氧期间,我们观察到CBF增加[48.5(标准差12.4)(常氧)至65.5(20.4)毫升·100毫升-1·分钟-1(低氧),P<0.05]和CMRO2增加[1.54(0.19)至1.79(0.25)微摩尔·毫升-1·分钟-1,P<0.05],以及PtiO2显著下降[25.0至11.4(2.7)毫米汞柱,P<0.05]。乙酰唑胺预防减轻了与急性低氧相关的CBF[53.7(20.7)毫升·100毫升-1·分钟-1(低氧+乙酰唑胺)]和CMRO2[1.41(0.09)微摩尔·毫升-1·分钟-1(低氧+乙酰唑胺)]的升高,但也降低了氧输送[6.92(1.45)(低氧)至5.60(1.14)毫摩尔/分钟(低氧+乙酰唑胺),P<0.05]。净效应是急性低氧期间脑组织PtiO2得到改善[11.4(2.7)(低氧)至16.5(3.0)毫米汞柱(低氧+乙酰唑胺),P<0.05]。除了其对肾脏的作用外,低剂量乙酰唑胺在毛细血管内皮也有效,我们推测脑二氧化碳排泄的局部中断是低氧期间CMRO2改善以及最终脑组织氧合改善的原因。本研究表明脑二氧化碳和pH在急性低氧期间调节CMRO2和PtiO2方面可能起关键作用。

相似文献

1
Acetazolamide during acute hypoxia improves tissue oxygenation in the human brain.
J Appl Physiol (1985). 2015 Dec 15;119(12):1494-500. doi: 10.1152/japplphysiol.00117.2015. Epub 2015 Oct 15.
2
Effect of acetazolamide on cerebral blood flow and cerebral metabolic rate for oxygen.
J Clin Invest. 1984 Nov;74(5):1634-9. doi: 10.1172/JCI111579.
3
Effects of acetazolamide on cerebral blood flow and brain tissue oxygenation.
Postgrad Med J. 1987 Mar;63(737):185-7. doi: 10.1136/pgmj.63.737.185.
4
Cerebral oxygen metabolism in adults with sickle cell disease.
Am J Hematol. 2020 Apr;95(4):401-412. doi: 10.1002/ajh.25727. Epub 2020 Jan 28.
5
Evidence from high-altitude acclimatization for an integrated cerebrovascular and ventilatory hypercapnic response but different responses to hypoxia.
J Appl Physiol (1985). 2017 Dec 1;123(6):1477-1486. doi: 10.1152/japplphysiol.00341.2017. Epub 2017 Jul 13.
6
Pulmonary vasodilation by acetazolamide during hypoxia is unrelated to carbonic anhydrase inhibition.
Am J Physiol Lung Cell Mol Physiol. 2007 Jan;292(1):L178-84. doi: 10.1152/ajplung.00205.2006. Epub 2006 Aug 25.
9
Acetazolamide improves cerebral oxygenation during exercise at high altitude.
High Alt Med Biol. 2006 Winter;7(4):290-301. doi: 10.1089/ham.2006.7.290.
10
Measurement of CMRO and its relationship with CBF in hypoxia with an extended calibrated BOLD method.
J Cereb Blood Flow Metab. 2020 Oct;40(10):2066-2080. doi: 10.1177/0271678X19885124. Epub 2019 Oct 30.

引用本文的文献

1
Effects of acetazolamide on exercise performance in patients with COPD going to high altitude: randomised controlled trial.
ERJ Open Res. 2025 Jan 20;11(1). doi: 10.1183/23120541.00767-2024. eCollection 2025 Jan.
4
Cortical oxygen extraction fraction using quantitative BOLD MRI and cerebral blood flow during vasodilation.
Front Physiol. 2023 Oct 6;14:1231793. doi: 10.3389/fphys.2023.1231793. eCollection 2023.
5
Effect of acetazolamide on visuomotor performance at high altitude in healthy people 40 years of age or older-RCT.
PLoS One. 2023 Jan 20;18(1):e0280585. doi: 10.1371/journal.pone.0280585. eCollection 2023.
6
Visuomotor performance at high altitude in COPD patients. Randomized placebo-controlled trial of acetazolamide.
Front Physiol. 2022 Sep 8;13:980755. doi: 10.3389/fphys.2022.980755. eCollection 2022.
7
Hypoxia alters posterior cingulate cortex metabolism during a memory task: A H fMRS study.
Neuroimage. 2022 Oct 15;260:119397. doi: 10.1016/j.neuroimage.2022.119397. Epub 2022 Jun 23.
8
Quantitative cerebrovascular reactivity MRI in mice using acetazolamide challenge.
Magn Reson Med. 2022 Nov;88(5):2233-2241. doi: 10.1002/mrm.29353. Epub 2022 Jun 17.
9
Three novel prevention, diagnostic, and treatment options for COVID-19 urgently necessitating controlled randomized trials.
Med Hypotheses. 2020 Oct;143:109851. doi: 10.1016/j.mehy.2020.109851. Epub 2020 May 22.
10
Quantitative assessment of cerebral venous blood T in mouse at 11.7T: Implementation, optimization, and age effect.
Magn Reson Med. 2018 Aug;80(2):521-528. doi: 10.1002/mrm.27046. Epub 2017 Dec 21.

本文引用的文献

1
Carbonic anhydrase inhibitors and high altitude illnesses.
Subcell Biochem. 2014;75:361-86. doi: 10.1007/978-94-007-7359-2_18.
3
Sustained high-altitude hypoxia increases cerebral oxygen metabolism.
J Appl Physiol (1985). 2013 Jan 1;114(1):11-8. doi: 10.1152/japplphysiol.00703.2012. Epub 2012 Sep 27.
4
Effect of hypoxia and hyperoxia on cerebral blood flow, blood oxygenation, and oxidative metabolism.
J Cereb Blood Flow Metab. 2012 Oct;32(10):1909-18. doi: 10.1038/jcbfm.2012.93. Epub 2012 Jun 27.
6
Effects of acetazolamide on cerebrovascular function and breathing stability at 5050 m.
J Physiol. 2012 Mar 1;590(5):1213-25. doi: 10.1113/jphysiol.2011.219923. Epub 2012 Jan 4.
7
On improving the speed and reliability of T2-relaxation-under-spin-tagging (TRUST) MRI.
Magn Reson Med. 2012 Jul;68(1):198-204. doi: 10.1002/mrm.23207. Epub 2011 Nov 29.
8
Calibration and validation of TRUST MRI for the estimation of cerebral blood oxygenation.
Magn Reson Med. 2012 Jan;67(1):42-9. doi: 10.1002/mrm.22970. Epub 2011 May 16.
9
Effects of acetazolamide and dexamethasone on cerebral hemodynamics in hypoxia.
J Appl Physiol (1985). 2011 May;110(5):1219-25. doi: 10.1152/japplphysiol.01393.2010. Epub 2011 Mar 10.
10
Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism.
Front Neuroenergetics. 2010 Jun 17;2:8. doi: 10.3389/fnene.2010.00008. eCollection 2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验