Suppr超能文献

NMA与弹性网络模型之间的桥梁:在粗粒度模型中保持全原子精度。

Bridging between NMA and Elastic Network Models: Preserving All-Atom Accuracy in Coarse-Grained Models.

作者信息

Na Hyuntae, Jernigan Robert L, Song Guang

机构信息

Department of Computer Science, Iowa State University, Ames, Iowa, United States of America.

Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America; Program of Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa, United States of America; L. H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, Iowa, United States of America.

出版信息

PLoS Comput Biol. 2015 Oct 16;11(10):e1004542. doi: 10.1371/journal.pcbi.1004542. eCollection 2015 Oct.

Abstract

Dynamics can provide deep insights into the functional mechanisms of proteins and protein complexes. For large protein complexes such as GroEL/GroES with more than 8,000 residues, obtaining a fine-grained all-atom description of its normal mode motions can be computationally prohibitive and is often unnecessary. For this reason, coarse-grained models have been used successfully. However, most existing coarse-grained models use extremely simple potentials to represent the interactions within the coarse-grained structures and as a result, the dynamics obtained for the coarse-grained structures may not always be fully realistic. There is a gap between the quality of the dynamics of the coarse-grained structures given by all-atom models and that by coarse-grained models. In this work, we resolve an important question in protein dynamics computations--how can we efficiently construct coarse-grained models whose description of the dynamics of the coarse-grained structures remains as accurate as that given by all-atom models? Our method takes advantage of the sparseness of the Hessian matrix and achieves a high efficiency with a novel iterative matrix projection approach. The result is highly significant since it can provide descriptions of normal mode motions at an all-atom level of accuracy even for the largest biomolecular complexes. The application of our method to GroEL/GroES offers new insights into the mechanism of this biologically important chaperonin, such as that the conformational transitions of this protein complex in its functional cycle are even more strongly connected to the first few lowest frequency modes than with other coarse-grained models.

摘要

动力学能够深入洞察蛋白质和蛋白质复合物的功能机制。对于像含有超过8000个残基的GroEL/GroES这样的大型蛋白质复合物,要获得其正常模式运动的精细全原子描述在计算上可能是难以承受的,而且通常也没有必要。因此,粗粒度模型已被成功应用。然而,大多数现有的粗粒度模型使用极其简单的势来表示粗粒度结构内的相互作用,结果,从粗粒度结构获得的动力学可能并不总是完全真实的。全原子模型给出的粗粒度结构动力学质量与粗粒度模型给出的动力学质量之间存在差距。在这项工作中,我们解决了蛋白质动力学计算中的一个重要问题——我们如何能够有效地构建粗粒度模型,使其对粗粒度结构动力学的描述与全原子模型给出的描述一样准确?我们的方法利用了海森矩阵的稀疏性,并通过一种新颖的迭代矩阵投影方法实现了高效率。结果具有高度的重要性,因为即使对于最大的生物分子复合物,它也能以全原子精度水平提供正常模式运动的描述。我们的方法应用于GroEL/GroES为这种生物学上重要的伴侣蛋白的机制提供了新的见解,例如该蛋白质复合物在其功能循环中的构象转变与最初几个最低频率模式的联系比与其他粗粒度模型的联系更为紧密。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcbf/4608564/8bb4e374a785/pcbi.1004542.g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验