Nguyen Van Duc, Pal Asish, Snijkers Frank, Colomb-Delsuc Mathieu, Leonetti Giulia, Otto Sijbren, van der Gucht Jasper
Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands.
Soft Matter. 2016 Jan 14;12(2):432-40. doi: 10.1039/c5sm02088c. Epub 2015 Oct 19.
We present a detailed study of self-assembled hydrogels of bundled and cross-linked networks consisting of positively charged amyloid-like nanofibers and a triblock copolymer with negatively charged end blocks as a cross-linker. In a first step small oligopeptides self-assemble into macrocycles which are held together by reversible disulfide bonds. Interactions between the peptides cause the macrocycles to assemble into nanofibers, which form a reversible hydrogel. The physical properties of the hydrogel are tuned using various methods such as control over the fibre length, addition of a cross-linking copolymer, and addition of salt. We establish a relationship between the bulk mechanical properties, the properties of the individual fibers and the hydrogel morphology using characterization techniques operating at different length scales such as rheology, atomic force microscopy (AFM) and cryo transmission electron microscopy (Cryo-TEM). This allows for a precise control of the elastic behaviour of these networks.
我们展示了一项关于由带正电荷的淀粉样纳米纤维和作为交联剂的带负电荷端基的三嵌段共聚物组成的束状和交联网络自组装水凝胶的详细研究。第一步,小寡肽自组装成通过可逆二硫键结合在一起的大环。肽之间的相互作用使大环组装成纳米纤维,进而形成可逆水凝胶。使用各种方法来调节水凝胶的物理性质,例如控制纤维长度、添加交联共聚物和添加盐。我们使用不同长度尺度的表征技术,如流变学、原子力显微镜(AFM)和冷冻透射电子显微镜(Cryo-TEM),建立了整体力学性能、单根纤维性能和水凝胶形态之间的关系。这使得能够精确控制这些网络的弹性行为。