Suppr超能文献

生物圈碳的全球氧化还原循环:光合作用与地壳过程的相互作用。

Global redox cycle of biospheric carbon: Interaction of photosynthesis and earth crust processes.

作者信息

Ivlev Alexander A

机构信息

Russian State Agrarian University - Moscow Agricultural Academy of K.A. Timiryazev, Timiryazevskaya str. 49, Moscow 127550, Russia.

出版信息

Biosystems. 2015 Nov;137:1-11. doi: 10.1016/j.biosystems.2015.10.001. Epub 2015 Oct 23.

Abstract

A model of the natural global redox cycle of biospheric carbon is introduced. According to this model, carbon transfer between biosphere and geospheres is accompanied by a conversion of the oxidative forms, presented by CO2, bicarbonate and carbonate ions, into the reduced forms, produced in photosynthesis. The mechanism of carbon transfer is associated with two phases of movement of lithospheric plates. In the short-term orogenic phase, CO2 from the subduction (plates' collisions) zones fills the "atmosphere-hydrosphere" system, resulting in climate warming. In the long-term quiet (geosynclynal) phase, weathering and photosynthesis become dominant depleting the oxidative forms of carbon. The above asymmetric periodicity exerts an impact on climate, biodiversity, distribution of organic matter in sedimentary deposits, etc. Along with photosynthesis expansion, the redox carbon cycle undergoes its development until it reaches the ecological compensation point, at which CO2 is depleted to the level critical to support the growth and reproduction of plants. This occurred in the Permo-Carboniferous time and in the Neogene. Shorter-term perturbations of the global carbon cycle in the form of glacial-interglacial oscillations appear near the ecological compensation point.

摘要

本文介绍了一个生物圈碳自然全球氧化还原循环的模型。根据该模型,生物圈与地圈之间的碳转移伴随着氧化形式(以二氧化碳、碳酸氢根和碳酸根离子形式存在)向光合作用产生的还原形式的转化。碳转移机制与岩石圈板块运动的两个阶段相关。在短期造山阶段,俯冲(板块碰撞)带的二氧化碳填充“大气 - 水圈”系统,导致气候变暖。在长期平静(地槽)阶段,风化作用和光合作用成为消耗碳氧化形式的主要因素。上述不对称周期性对气候、生物多样性、沉积矿床中有机质分布等产生影响。随着光合作用的扩展,氧化还原碳循环不断发展,直至达到生态补偿点,此时二氧化碳被消耗至对植物生长和繁殖至关重要的临界水平。这发生在石炭 - 二叠纪时期和新近纪。在生态补偿点附近出现了以冰期 - 间冰期振荡形式存在的全球碳循环短期扰动。

相似文献

1
Global redox cycle of biospheric carbon: Interaction of photosynthesis and earth crust processes.
Biosystems. 2015 Nov;137:1-11. doi: 10.1016/j.biosystems.2015.10.001. Epub 2015 Oct 23.
3
Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment.
Nature. 1992 Oct 15;359(6396):605-9. doi: 10.1038/359605a0.
4
The life span of the biosphere revisited.
Nature. 1992;360(6406):721-3. doi: 10.1038/360721a0.
5
Continental-pelagic carbonate partitioning and the global carbonate-silicate cycle.
Geology. 1991 Mar;19:204-6. doi: 10.1130/0091-7613(1991)019<0204:cpcpat>2.3.co;2.
6
Snowball Earth prevention by dissolved organic carbon remineralization.
Nature. 2007 Dec 6;450(7171):813-8. doi: 10.1038/nature06354.
7
Was the Archaean biosphere upside down?
Nature. 1987 Oct 22;329:710-2. doi: 10.1038/329710a0.
8
Precambrian evolution of the climate system.
Glob Planet Change. 1990;82:261-89.
10
Long-term stability of the Earth's climate.
Glob Planet Change. 1989;75:83-95.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验