Suppr超能文献

同三聚体复合物中真核生物SWEET转运蛋白的结构

Structure of a eukaryotic SWEET transporter in a homotrimeric complex.

作者信息

Tao Yuyong, Cheung Lily S, Li Shuo, Eom Joon-Seob, Chen Li-Qing, Xu Yan, Perry Kay, Frommer Wolf B, Feng Liang

机构信息

Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA.

Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA.

出版信息

Nature. 2015 Nov 12;527(7577):259-263. doi: 10.1038/nature15391. Epub 2015 Oct 19.

Abstract

Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loading for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure-function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.

摘要

真核生物依靠糖类形式在器官之间高效分配能量和碳骨架。动物体内的葡萄糖和植物体内的蔗糖是主要的分配形式。细胞对糖类的摄取和释放需要囊泡和/或质膜转运蛋白。人类和植物利用三个超家族的蛋白质进行糖类转运:主要易化子超家族(MFS)、钠溶质同向转运体家族(SSF,仅存在于动物界)以及SWEETs。SWEETs可将单糖和双糖转运穿过液泡膜或质膜。植物SWEETs在细胞器、细胞和器官之间的糖类转运中起关键作用,尤其在花蜜分泌、韧皮部装载以进行长距离转运、花粉营养和种子充实过程中。植物SWEETs可能通过受感染细胞的糖类泄漏导致病原体易感性。拟南芥液泡膜上的AtSWEET2可将糖类隔离在根液泡中;功能缺失突变体对腐霉菌感染的易感性增加。在此,我们表明其同源物,水稻(Oryza sativa)液泡葡萄糖转运蛋白OsSWEET2b由一对不对称的三螺旋束组成,通过一个反向连接跨膜螺旋(TM4)相连以形成转运途径。结构和生化分析表明,OsSWEET2b处于明显的向内(胞质)开放状态,形成同聚三聚体。TM4与原体中的第一个三螺旋束紧密相互作用,并介导原体之间的关键接触。对拟南芥亲缘关系较近的SWEET1进行结构导向诱变,确定了底物转运和原体串扰中的关键残基。深入了解SWEETs的结构-功能关系对于理解真核生物SWEETs的转运机制具有重要价值,可能有助于构建糖类通量。

相似文献

1
Structure of a eukaryotic SWEET transporter in a homotrimeric complex.
Nature. 2015 Nov 12;527(7577):259-263. doi: 10.1038/nature15391. Epub 2015 Oct 19.
2
Structures of bacterial homologues of SWEET transporters in two distinct conformations.
Nature. 2014 Nov 20;515(7527):448-452. doi: 10.1038/nature13670. Epub 2014 Sep 3.
3
SWEETs, transporters for intracellular and intercellular sugar translocation.
Curr Opin Plant Biol. 2015 Jun;25:53-62. doi: 10.1016/j.pbi.2015.04.005. Epub 2015 May 15.
4
Plant SWEETs: from sugar transport to plant-pathogen interaction and more unexpected physiological roles.
Plant Physiol. 2021 Jun 11;186(2):836-852. doi: 10.1093/plphys/kiab127.
5
Molecular mechanism of substrate recognition and transport by the AtSWEET13 sugar transporter.
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10089-10094. doi: 10.1073/pnas.1709241114. Epub 2017 Sep 6.
6
Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants.
Plant Mol Biol. 2019 Jul;100(4-5):351-365. doi: 10.1007/s11103-019-00872-4. Epub 2019 Apr 27.
8
Functional role of oligomerization for bacterial and plant SWEET sugar transporter family.
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):E3685-94. doi: 10.1073/pnas.1311244110. Epub 2013 Sep 11.
9
Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2.
Plant J. 2011 Oct;68(1):129-36. doi: 10.1111/j.1365-313X.2011.04672.x. Epub 2011 Jul 27.

引用本文的文献

2
Structure of human mitochondrial pyruvate carrier MPC1 and MPC2 complex.
Nat Commun. 2025 Jul 21;16(1):6700. doi: 10.1038/s41467-025-61939-z.
5
AlphaFold-Guided Bespoke Gene Editing Enhances Field-Grown Soybean Oil Contents.
Adv Sci (Weinh). 2025 Jun;12(23):e2500290. doi: 10.1002/advs.202500290. Epub 2025 May 14.
7
The developmental basis of floral nectary diversity and evolution.
New Phytol. 2025 Jun;246(6):2462-2477. doi: 10.1111/nph.70141. Epub 2025 May 1.
8
Sugar transporters: mediators of carbon flow between plants and microbes.
Front Plant Sci. 2025 Apr 16;16:1536969. doi: 10.3389/fpls.2025.1536969. eCollection 2025.
9
Any1 is a phospholipid scramblase involved in endosome biogenesis.
J Cell Biol. 2025 Apr 7;224(4). doi: 10.1083/jcb.202410013. Epub 2025 Mar 6.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
SWEETs, transporters for intracellular and intercellular sugar translocation.
Curr Opin Plant Biol. 2015 Jun;25:53-62. doi: 10.1016/j.pbi.2015.04.005. Epub 2015 May 15.
5
The twisted relation between Pnu and SWEET transporters.
Trends Biochem Sci. 2015 Apr;40(4):183-8. doi: 10.1016/j.tibs.2015.02.002. Epub 2015 Mar 7.
6
Transport of sugars.
Annu Rev Biochem. 2015;84:865-94. doi: 10.1146/annurev-biochem-060614-033904. Epub 2015 Mar 5.
7
Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter.
Nat Commun. 2015 Jan 19;6:6112. doi: 10.1038/ncomms7112.
8
Crystal structure of a bacterial homologue of SWEET transporters.
Cell Res. 2014 Dec;24(12):1486-9. doi: 10.1038/cr.2014.144. Epub 2014 Nov 7.
9
When two turn into one: evolution of membrane transporters from half modules.
Biol Chem. 2014 Dec;395(12):1379-88. doi: 10.1515/hsz-2014-0224.
10
Crystal structure of the vitamin B3 transporter PnuC, a full-length SWEET homolog.
Nat Struct Mol Biol. 2014 Nov;21(11):1013-5. doi: 10.1038/nsmb.2909. Epub 2014 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验