Tao Yuyong, Cheung Lily S, Li Shuo, Eom Joon-Seob, Chen Li-Qing, Xu Yan, Perry Kay, Frommer Wolf B, Feng Liang
Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA.
Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA.
Nature. 2015 Nov 12;527(7577):259-263. doi: 10.1038/nature15391. Epub 2015 Oct 19.
Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loading for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure-function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.
真核生物依靠糖类形式在器官之间高效分配能量和碳骨架。动物体内的葡萄糖和植物体内的蔗糖是主要的分配形式。细胞对糖类的摄取和释放需要囊泡和/或质膜转运蛋白。人类和植物利用三个超家族的蛋白质进行糖类转运:主要易化子超家族(MFS)、钠溶质同向转运体家族(SSF,仅存在于动物界)以及SWEETs。SWEETs可将单糖和双糖转运穿过液泡膜或质膜。植物SWEETs在细胞器、细胞和器官之间的糖类转运中起关键作用,尤其在花蜜分泌、韧皮部装载以进行长距离转运、花粉营养和种子充实过程中。植物SWEETs可能通过受感染细胞的糖类泄漏导致病原体易感性。拟南芥液泡膜上的AtSWEET2可将糖类隔离在根液泡中;功能缺失突变体对腐霉菌感染的易感性增加。在此,我们表明其同源物,水稻(Oryza sativa)液泡葡萄糖转运蛋白OsSWEET2b由一对不对称的三螺旋束组成,通过一个反向连接跨膜螺旋(TM4)相连以形成转运途径。结构和生化分析表明,OsSWEET2b处于明显的向内(胞质)开放状态,形成同聚三聚体。TM4与原体中的第一个三螺旋束紧密相互作用,并介导原体之间的关键接触。对拟南芥亲缘关系较近的SWEET1进行结构导向诱变,确定了底物转运和原体串扰中的关键残基。深入了解SWEETs的结构-功能关系对于理解真核生物SWEETs的转运机制具有重要价值,可能有助于构建糖类通量。