Suppr超能文献

利用患者来源的肿瘤异种移植物进行高通量筛选,以预测临床试验药物反应。

High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response.

机构信息

Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA.

Oncology Disease Area, Novartis Institutes for Biomedical Research, Basel, Switzerland.

出版信息

Nat Med. 2015 Nov;21(11):1318-25. doi: 10.1038/nm.3954. Epub 2015 Oct 19.

Abstract

Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses.

摘要

在临床前开发阶段,利用有限的癌症模型对候选治疗药物进行分析会阻碍对临床疗效的预测,并确定导致患者出现异质性反应的因素,从而为患者选择策略提供依据。我们建立了约 1000 个具有多种驱动基因突变的患者来源肿瘤异种移植模型(PDX)。利用这些 PDX,我们采用 1×1×1 的实验设计(PDX 临床试验或 PCT)进行体内化合物筛选,以评估 62 种治疗方法在六种适应症中的人群反应。我们通过鉴定基因型与药物反应之间的关联以及耐药机制,证明了这种方法的可重复性和临床转化能力。此外,我们的结果表明,PCT 可能比细胞系模型更能准确评估某些治疗方式的临床潜力。因此,我们提出,这种实验范式有可能改善治疗方式的临床前评估,并提高我们预测临床试验反应的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验