Suppr超能文献

使用gPAR-CLIP-seq绘制全转录组范围的RBP结合位点图谱:生物信息学分析

Mapping the Transcriptome-Wide Landscape of RBP Binding Sites Using gPAR-CLIP-seq: Bioinformatic Analysis.

作者信息

Freeberg Mallory A, Kim John K

机构信息

Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109-2216, USA.

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2216, USA.

出版信息

Methods Mol Biol. 2016;1361:91-104. doi: 10.1007/978-1-4939-3079-1_6.

Abstract

Protein-RNA interactions are integral components of posttranscriptional gene regulatory processes including mRNA processing and assembly of cellular architectures. Dysregulation of RNA-binding protein (RBP) expression or disruptions in RBP-RNA interactions underlie a variety of human pathologies and genetic diseases including cancer and neurodegenerative diseases (reviewed in (Cooper et al., Cell 136(4):777-793, 2009; Darnell, Cancer Res Treat 42(3):125-129, 2010; Lukong et al., Trends Genet 24 (8):416-425, 2008)). Recent studies have uncovered only a small proportion of the extensive RBP-RNA interactome in any organism (Baltz et al., Mol Cell 46(5):674-690, 2012; Castello et al., Cell 149(6):1393-1406, 2012; Freeberg et al., Genome Biol 14(2):R13, 2013; Hogan et al., PLoS Biol 6(10):e255, 2008; Mitchell et al., Nat Struct Mol Biol 20(1):127-133, 2013; Tsvetanova et al. PLoS One 5(9): pii: e12671, 2010; Schueler et al., Genome Biol 15(1):R15, 2014; Silverman et al., Genome Biol 15(1):R3, 2014). To expand our understanding of how RBP-RNA interactions govern RNA-related processes, we developed gPAR-CLIP-seq (global photoactivatable-ribonucleoside-enhanced cross-linking and precipitation followed by deep sequencing) for capturing and sequencing all regions of the Saccharomyces cerevisiae transcriptome bound by RBPs (Freeberg et al., Genome Biol 14(2):R13, 2013). This chapter describes a pipeline for bioinformatic analysis of gPAR-CLIP-seq data. The first half of this pipeline can be implemented by running locally installed programs or by running the programs using the Galaxy platform (Blankenberg et al., Curr Protoc Mol Biol. Chapter 19:Unit 19 10 11-21, 2010; Giardine et al., Genome Res 15 (10):1451-1455, 2005; Goecks et al., Genome Biol 11(8):R86, 2010). The second half of this pipeline can be implemented by user-generated code in any language using the pseudocode provided as a template.

摘要

蛋白质-RNA相互作用是转录后基因调控过程的重要组成部分,包括mRNA加工和细胞结构组装。RNA结合蛋白(RBP)表达失调或RBP-RNA相互作用中断是多种人类疾病和遗传疾病(包括癌症和神经退行性疾病)的基础(综述见(Cooper等人,《细胞》136(4):777-793, 2009;Darnell,《癌症研究与治疗》42(3):125-129, 2010;Lukong等人,《遗传学趋势》24(8):416-425, 2008))。最近的研究仅揭示了任何生物体中广泛的RBP-RNA相互作用组的一小部分(Baltz等人,《分子细胞》46(5):674-690, 2012;Castello等人,《细胞》149(6):1393-1406, 2012;Freeberg等人,《基因组生物学》14(2):R13, 2013;Hogan等人,《公共科学图书馆·生物学》6(10):e255, 2008;Mitchell等人,《自然结构与分子生物学》20(1):127-133, 2013;Tsvetanova等人,《公共科学图书馆·综合》5(9): pii: e12671, 2010;Schueler等人,《基因组生物学》15(1):R15, 2014;Silverman等人,《基因组生物学》15(1):R3, 2014))。为了扩展我们对RBP-RNA相互作用如何控制RNA相关过程的理解,我们开发了gPAR-CLIP-seq(全局光激活核糖核苷增强交联和沉淀,随后进行深度测序),用于捕获和测序酿酒酵母转录组中与RBP结合的所有区域(Freeberg等人,《基因组生物学》14(2):R13, 2013)。本章描述了一个用于gPAR-CLIP-seq数据生物信息学分析的流程。该流程的前半部分可以通过运行本地安装的程序或使用Galaxy平台运行程序来实现(Blankenberg等人,《分子生物学实验指南》第19章:单元19 10 11-21, 2010;Giardine等人,《基因组研究》15(10):1451-1455, 2005;Goecks等人,《基因组生物学》11(8):R86, 2010)。该流程的后半部分可以通过使用提供的伪代码作为模板,用任何语言由用户生成的代码来实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验