Feng Yi-Jun, Feng Qi, Tao Jie, Zhao Rong, Ji Yong-Hua
Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200444 China.
Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062 China ; Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203 China.
J Venom Anim Toxins Incl Trop Dis. 2015 Oct 19;21:42. doi: 10.1186/s40409-015-0043-6. eCollection 2015.
BmK I, a site-3-specific modulator of voltage-gated sodium channels (VGSCs), causes pain and hyperalgesia in rats, while BmK IT2, a site-4-specific modulator of VGSCs, suppresses pain-related responses. A stronger pain-related effect has been previously attributed to Buthus martensi Karsch (BmK) venom, which points out the joint pharmacological effect in the crude venom.
In order to detect the joint effect of BmK I and BmK IT2 on ND7-23 cells, the membrane current was measured by whole cell recording. BmK I and BmK IT2 were applied successively and jointly, and the synergistic modulations of VGSCs on ND7-23 cells were detected.
Larger peak INa and more negative half-activation voltage were elicited by joint application of BmK I and BmK IT2 than by application of BmK I or BmK IT2 alone. Compared to the control, co-applied BmK I and BmK IT2 also significantly prolonged the time constant of inactivation.
Our results indicated that site-4 toxin (BmK IT2) could enhance the pharmacological effect induced by site-3 toxin (BmK I), suggesting a stronger effect elicited by both toxins that alone usually exhibit opposite pharmacological effects, which is related to the allosteric interaction between receptor site 3 and site 4. Meanwhile, these results may bring a novel perspective for exploring the underlying mechanisms of scorpion sting-induced pain.