Machida Takanori, Yamamoto Dai, Iwamoto Mitsugu, Sakiyama Kazuo
The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan.
Fujitsu Laboratories Ltd., 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan.
ScientificWorldJournal. 2015;2015:864812. doi: 10.1155/2015/864812. Epub 2015 Sep 30.
In general, conventional Arbiter-based Physically Unclonable Functions (PUFs) generate responses with low unpredictability. The N-XOR Arbiter PUF, proposed in 2007, is a well-known technique for improving this unpredictability. In this paper, we propose a novel design for Arbiter PUF, called Double Arbiter PUF, to enhance the unpredictability on field programmable gate arrays (FPGAs), and we compare our design to conventional N-XOR Arbiter PUFs. One metric for judging the unpredictability of responses is to measure their tolerance to machine-learning attacks. Although our previous work showed the superiority of Double Arbiter PUFs regarding unpredictability, its details were not clarified. We evaluate the dependency on the number of training samples for machine learning, and we discuss the reason why Double Arbiter PUFs are more tolerant than the N-XOR Arbiter PUFs by evaluating intrachip variation. Further, the conventional Arbiter PUFs and proposed Double Arbiter PUFs are evaluated according to other metrics, namely, their uniqueness, randomness, and steadiness. We demonstrate that 3-1 Double Arbiter PUF archives the best performance overall.
一般来说,传统的基于仲裁器的物理不可克隆函数(PUF)生成的响应具有较低的不可预测性。2007年提出的N异或仲裁器PUF是一种提高这种不可预测性的知名技术。在本文中,我们提出了一种仲裁器PUF的新颖设计,称为双仲裁器PUF,以增强现场可编程门阵列(FPGA)上的不可预测性,并将我们的设计与传统的N异或仲裁器PUF进行比较。判断响应不可预测性的一个指标是测量它们对机器学习攻击的耐受性。虽然我们之前的工作表明双仲裁器PUF在不可预测性方面具有优势,但其细节尚未阐明。我们评估了机器学习对训练样本数量的依赖性,并通过评估芯片内变化来讨论双仲裁器PUF比N异或仲裁器PUF更具耐受性的原因。此外,根据其他指标,即它们的唯一性、随机性和稳定性,对传统仲裁器PUF和提出的双仲裁器PUF进行了评估。我们证明3-1双仲裁器PUF总体上实现了最佳性能。