Suppr超能文献

用于锂离子电池负极的低品位硅源的同步纯化和穿孔。

Simultaneous Purification and Perforation of Low-Grade Si Sources for Lithium-Ion Battery Anode.

机构信息

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210093, China.

出版信息

Nano Lett. 2015 Nov 11;15(11):7742-7. doi: 10.1021/acs.nanolett.5b03932. Epub 2015 Oct 28.

Abstract

Silicon is regarded as one of the most promising candidates for lithium-ion battery anodes because of its abundance and high theoretical capacity. Various silicon nanostructures have been heavily investigated to improve electrochemical performance by addressing issues related to structure fracture and unstable solid-electrolyte interphase (SEI). However, to further enable widespread applications, scalable and cost-effective processes need to be developed to produce these nanostructures at large quantity with finely controlled structures and morphologies. In this study, we develop a scalable and low cost process to produce porous silicon directly from low grade silicon through ball-milling and modified metal-assisted chemical etching. The morphology of porous silicon can be drastically changed from porous-network to nanowire-array by adjusting the component in reaction solutions. Meanwhile, this perforation process can also effectively remove the impurities and, therefore, increase Si purity (up to 99.4%) significantly from low-grade and low-cost ferrosilicon (purity of 83.4%) sources. The electrochemical examinations indicate that these porous silicon structures with carbon treatment can deliver a stable capacity of 1287 mAh g(-1) over 100 cycles at a current density of 2 A g(-1). This type of purified porous silicon with finely controlled morphology, produced by a scalable and cost-effective fabrication process, can also serve as promising candidates for many other energy applications, such as thermoelectrics and solar energy conversion devices.

摘要

硅被认为是锂离子电池负极最有前途的候选材料之一,因为它的丰富度和高理论容量。各种硅纳米结构已经被广泛研究,以通过解决与结构断裂和不稳定的固体电解质界面(SEI)相关的问题来提高电化学性能。然而,为了进一步实现广泛应用,需要开发可扩展且具有成本效益的工艺,以便以大量精细控制的结构和形态生产这些纳米结构。在这项研究中,我们通过球磨和改进的金属辅助化学刻蚀,开发了一种从低品位硅直接生产多孔硅的可扩展且低成本工艺。通过调整反应溶液中的成分,多孔硅的形态可以从多孔网络剧烈地改变为纳米线阵列。同时,这种穿孔工艺还可以有效地去除杂质,从而使硅的纯度(高达 99.4%)从低品位和低成本的硅铁(纯度为 83.4%)源显著提高。电化学测试表明,这些经过碳处理的多孔硅结构在 2 A g(-1)的电流密度下经过 100 次循环后可稳定释放 1287 mAh g(-1)的容量。通过可扩展且具有成本效益的制造工艺生产的这种具有精细控制形态的纯化多孔硅,也可以作为许多其他能源应用的有前途的候选材料,例如热电和太阳能转换器件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验