Wiedemann Mats, Gurrola-Díaz Carmen M, Vargas-Guerrero Belinda, Wink Michael, García-López Pedro M, Düfer Martina
Dept. of Pharmaceutical and Medicinal Chemistry, Münster University, Corrensstraße 48, 48149 Münster, Germany.
Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, Jalisco, Mexico.
Molecules. 2015 Oct 20;20(10):19085-100. doi: 10.3390/molecules201019085.
The glucose-lowering effects of lupin seeds involve the combined action of several components. The present study investigates the influence of one of the main quinolizidine alkaloids, lupanine, on pancreatic beta cells and in an animal model of type-2 diabetes mellitus. In vitro studies were performed with insulin-secreting INS-1E cells or islets of C57BL/6 mice. In the in vivo experiments, hyperglycemia was induced in rats by injecting streptozotocin (65 mg/kg body weight). In the presence of 15 mmol/L glucose, insulin secretion was significantly elevated by 0.5 mmol/L lupanine, whereas the alkaloid did not stimulate insulin release with lower glucose concentrations. In islets treated with l-arginine, the potentiating effect of lupanine already occurred at 8 mmol/L glucose. Lupanine increased the expression of the Ins-1 gene. The potentiating effect on secretion was correlated to membrane depolarization and an increase in the frequency of Ca(2+) action potentials. Determination of the current through ATP-dependent K⁺ channels (KATP channels) revealed that lupanine directly inhibited the channel. The effect was dose-dependent but, even with a high lupanine concentration of 1 mmol/L or after a prolonged exposure time (12 h), the KATP channel block was incomplete. Oral administration of lupanine did not induce hypoglycemia. By contrast, lupanine improved glycemic control in response to an oral glucose tolerance test in streptozotocin-diabetic rats. In summary, lupanine acts as a positive modulator of insulin release obviously without a risk for hypoglycemic episodes.
羽扇豆种子的降糖作用涉及多种成分的联合作用。本研究调查了主要喹诺里西啶生物碱之一的羽扇豆碱对胰腺β细胞以及2型糖尿病动物模型的影响。使用胰岛素分泌型INS-1E细胞或C57BL/6小鼠胰岛进行了体外研究。在体内实验中,通过注射链脲佐菌素(65mg/kg体重)诱导大鼠高血糖。在15mmol/L葡萄糖存在的情况下,0.5mmol/L羽扇豆碱可使胰岛素分泌显著升高,而在较低葡萄糖浓度下该生物碱不会刺激胰岛素释放。在用L-精氨酸处理的胰岛中,羽扇豆碱的增强作用在8mmol/L葡萄糖时就已出现。羽扇豆碱增加了Ins-1基因的表达。对分泌的增强作用与膜去极化以及Ca(2+)动作电位频率的增加相关。通过ATP依赖性钾通道(KATP通道)的电流测定显示,羽扇豆碱直接抑制该通道。这种作用呈剂量依赖性,但即使在1mmol/L的高羽扇豆碱浓度或延长暴露时间(12小时)后,KATP通道阻滞也不完全。口服羽扇豆碱不会引起低血糖。相反,在链脲佐菌素诱导的糖尿病大鼠口服葡萄糖耐量试验中,羽扇豆碱改善了血糖控制。总之,羽扇豆碱明显作为胰岛素释放的正向调节剂,且无低血糖发作风险。