Suppr超能文献

揭示大肠杆菌的光电催化灭活机制:来自亲本和抗氧化单基因敲除突变体响应的有力证据。

Unveiling the photoelectrocatalytic inactivation mechanism of Escherichia coli: Convincing evidence from responses of parent and anti-oxidation single gene knockout mutants.

机构信息

The State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China.

The State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.

出版信息

Water Res. 2016 Jan 1;88:135-143. doi: 10.1016/j.watres.2015.10.003. Epub 2015 Oct 14.

Abstract

This study investigated photoelectrocatalytic (PEC) inactivation mechanism of bacteria using parental Escherichia coli (E. coli) BW25113 and its isogenic mutants deficient in catalase HPI (katG(-), JW3914-1) and Mn-SOD (sodA(-), JW3879-1). BW25113 in the mid-log phase was less susceptible to PEC inactivation than those in early-log and stationary phases, consistent with the peak activities of catalase and superoxide dismutase (SOD) at mid-log phase (30.6 and 13.0 Unit/ml/OD600). For different strains all in mid-log phase, PEC inactivation efficiency followed the order katG(-) > sodA(-) > BW25113, with the duration of 60, 60 and 90 min for complete inactivation of ∼2 × 10(7) CFU mL(-1) bacteria, respectively. Correspondingly, catalase and SOD levels of BW25113 were also higher than the mutants by 5.9 and 11.7 Unit/mL/OD600, respectively. Reactive oxygen species (ROSs) concentrations in PEC systems revealed that the inactivation performance coincided with H2O2 levels, rather than OH. Moreover, pre-incubation with H2O2 elevated catalase activities and PEC inactivation resistance of BW25113 were positively correlated. The above results indicated that H2O2 was the dominant PEC generated bactericide, and anti-oxidative enzymes especially catalase contributed greatly to the bacterial PEC resistance capacity. Further tests revealed that PEC treatment raised the intracellular ROSs concentration by more than 3 times, due to the permeated H2O2 and its intracellular derivative, OH. However, oxidative stress response of E. coli, such as increased catalase or SOD were not observed, perhaps because the ROSs overwhelmed the bacterial protective capacity. The accumulated ROSs subsequently caused oxidative damages to E. coli cells, including membrane damage, K(+) leakage, and protein oxidation. Compared with BW25113, the mutants experienced damages earlier and at higher levels, confirming the essential roles of catalase and SOD in the bacterial PEC resistance.

摘要

本研究使用亲代大肠杆菌(E. coli)BW25113 及其缺乏过氧化氢酶 HPI(katG(-))和锰超氧化物歧化酶(sodA(-))的基因缺失突变体 JW3914-1 和 JW3879-1 来研究光电催化(PEC)杀菌的机制。处于对数中期的 BW25113 比早期和静止期的细菌对 PEC 失活的敏感性更低,这与过氧化氢酶和超氧化物歧化酶(SOD)在对数中期的最高活性(30.6 和 13.0 Unit/ml/OD600)一致。对于所有处于对数中期的不同菌株,PEC 失活效率的顺序为 katG(-) > sodA(-) > BW25113,分别需要 60、60 和 90 分钟才能完全灭活约 2×10(7) CFU/mL(-1) 的细菌。相应地,BW25113 的过氧化氢酶和 SOD 水平也比突变体高 5.9 和 11.7 Unit/mL/OD600。PEC 系统中的活性氧(ROS)浓度表明,失活性能与 H2O2 水平一致,而不是 OH。此外,H2O2 的预孵育提高了 BW25113 的过氧化氢酶活性和 PEC 抗性,两者呈正相关。上述结果表明,H2O2 是 PEC 产生的主要杀菌物质,抗氧化酶,特别是过氧化氢酶,对细菌的 PEC 抗性有很大贡献。进一步的测试表明,由于渗透的 H2O2 及其细胞内衍生物 OH,PEC 处理使细胞内 ROS 浓度增加了 3 倍以上。然而,E. coli 没有观察到氧化应激反应,例如增加的过氧化氢酶或 SOD,也许是因为 ROS 超过了细菌的保护能力。积累的 ROS 随后对 E. coli 细胞造成氧化损伤,包括膜损伤、K(+)泄漏和蛋白质氧化。与 BW25113 相比,突变体更早且更严重地受到损伤,证实了过氧化氢酶和 SOD 在细菌 PEC 抗性中的重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验