Martin Che L, Singh Shaneen M
Biology Department, the Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York, 10016.
Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Ave. Brooklyn, New York, 11210, USA.
Cytoskeleton (Hoboken). 2015 Nov;72(11):585-96. doi: 10.1002/cm.21261. Epub 2015 Nov 4.
Myosins (MYO) define a superfamily of motor proteins which facilitate movement along cytoskeletal actin filaments in an ATP-dependent manner. To date, over 30 classes of myosin have been defined that vary in their roles and distribution across different taxa. The multidomain tail of myosin is responsible for the observed functional differences in different myosin classes facilitating differential binding to different cargos. One domain found in this region, the FERM domain, is found in several diverse proteins and is involved in many biological functions ranging from cell adhesion and actin-driven cytoskeleton assembly to cell signaling. Recently, new classes of unconventional myosin have been identified in Tetrahymena thermophila. In this study, we have identified, modeled, and characterized eight FERM domains from the unconventional T. thermophila myosins as their complete functional MyTH4-FERM cassettes. Our results reveal notable sequence, structural, and electrostatic differences between T. thermophila and other characterized FERM domains. Specifically, T. thermophila FERM domains contain helical inserts or extensions, which contribute to significant differences in surface electrostatic profiles of T. thermophila myosin FERMs when compared to the conventional FERM domains. Analyses of the modeled domains reveal differences in key functional residues as well as phosphoinositide-binding signatures and affinities. The work presented here broadens the scope of our understanding of myosin classes and their inherent functions, and provides a platform for experimentalists to design rational experimental studies to test the functional roles for T. thermophila myosins.
肌球蛋白(MYO)定义了一个马达蛋白超家族,它们以ATP依赖的方式促进沿细胞骨架肌动蛋白丝的运动。迄今为止,已定义了30多种肌球蛋白类别,它们在不同分类群中的作用和分布各不相同。肌球蛋白的多结构域尾部导致了不同肌球蛋白类别中观察到的功能差异,促进了与不同货物的差异结合。在该区域发现的一个结构域,即FERM结构域,存在于多种不同的蛋白质中,并参与从细胞粘附、肌动蛋白驱动的细胞骨架组装到细胞信号传导等许多生物学功能。最近,在嗜热四膜虫中发现了新的非常规肌球蛋白类别。在本研究中,我们从非常规嗜热四膜虫肌球蛋白中鉴定、建模并表征了八个FERM结构域,作为它们完整的功能性MyTH4-FERM盒。我们的结果揭示了嗜热四膜虫与其他已表征的FERM结构域之间显著的序列、结构和静电差异。具体而言,嗜热四膜虫FERM结构域包含螺旋插入或延伸,与传统FERM结构域相比,这导致嗜热四膜虫肌球蛋白FERM的表面静电分布存在显著差异。对建模结构域的分析揭示了关键功能残基以及磷酸肌醇结合特征和亲和力的差异。本文所呈现的工作拓宽了我们对肌球蛋白类别及其固有功能理解的范围,并为实验人员设计合理的实验研究以测试嗜热四膜虫肌球蛋白的功能作用提供了一个平台。