Tsuchiya Jun, Mookherjee Mainak
Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577 JAPAN.
Earth-Life Science Institute Ehime Satellite, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577 JAPAN.
Sci Rep. 2015 Oct 23;5:15534. doi: 10.1038/srep15534.
Dense hydrous magnesium silicate (DHMS) phases play a crucial role in transporting water in to the Earth's interior. A newly discovered DHMS, phase H (MgSiO4H2), is stable at Earth's lower mantle, i.e., at pressures greater than 30 GPa. Here we report the crystal structure and elasticity of phase H and its evolution upon compression. Using first principles simulations, we have explored the relative energetics of the candidate crystal structures with ordered and disordered configurations of magnesium and silicon atoms in the octahedral sites. At conditions relevant to Earth's lower mantle, it is likely that phase H is able to incorporate a significant amount of aluminum, which may enhance the thermodynamic stability of phase H. The sound wave velocities of phase H are ~2-4% smaller than those of isostructural δ-AlOOH. The shear wave impedance contrast due to the transformation of phase D to a mixture of phase H and stishovite at pressures relevant to the upper part of the lower mantle could partly explain the geophysical observations. The calculated elastic wave velocities and anisotropies indicate that phase H can be a source of significant seismic anisotropy in the lower mantle.
致密含水硅酸镁(DHMS)相在将水输送到地球内部的过程中起着至关重要的作用。一种新发现的DHMS相H(MgSiO₄H₂)在地球下地幔中是稳定的,即在压力大于30吉帕的情况下。在此,我们报告相H的晶体结构和弹性及其在压缩时的演化。通过第一性原理模拟,我们研究了八面体位置上镁和硅原子有序和无序构型的候选晶体结构的相对能量。在与地球下地幔相关的条件下,相H很可能能够容纳大量的铝,这可能会增强相H的热力学稳定性。相H的声波速度比同结构的δ-AlOOH小约2 - 4%。在与下地幔上部相关的压力下,由于相D转变为相H和斯石英的混合物而产生的剪切波阻抗对比可以部分解释地球物理观测结果。计算出的弹性波速度和各向异性表明,相H可能是下地幔中显著地震各向异性的一个来源。