Suppr超能文献

数据分辨率对三种“名录”深海栖息地当前保护范围的预测分布和范围估计的影响

The Influence of Data Resolution on Predicted Distribution and Estimates of Extent of Current Protection of Three 'Listed' Deep-Sea Habitats.

作者信息

Ross Lauren K, Ross Rebecca E, Stewart Heather A, Howell Kerry L

机构信息

Marine Biology & Ecology Research Centre, Marine Institute, Plymouth University, Plymouth, United Kingdom.

British Geological Survey, Murchison House, West Mains Road, Edinburgh, United Kingdom.

出版信息

PLoS One. 2015 Oct 23;10(10):e0140061. doi: 10.1371/journal.pone.0140061. eCollection 2015.

Abstract

Modelling approaches have the potential to significantly contribute to the spatial management of the deep-sea ecosystem in a cost effective manner. However, we currently have little understanding of the accuracy of such models, developed using limited data, of varying resolution. The aim of this study was to investigate the performance of predictive models constructed using non-simulated (real world) data of different resolution. Predicted distribution maps for three deep-sea habitats were constructed using MaxEnt modelling methods using high resolution multibeam bathymetric data and associated terrain derived variables as predictors. Model performance was evaluated using repeated 75/25 training/test data partitions using AUC and threshold-dependent assessment methods. The overall extent and distribution of each habitat, and the percentage contained within an existing MPA network were quantified and compared to results from low resolution GEBCO models. Predicted spatial extent for scleractinian coral reef and Syringammina fragilissima aggregations decreased with an increase in model resolution, whereas Pheronema carpenteri total suitable area increased. Distinct differences in predicted habitat distribution were observed for all three habitats. Estimates of habitat extent contained within the MPA network all increased when modelled at fine scale. High resolution models performed better than low resolution models according to threshold-dependent evaluation. We recommend the use of high resolution multibeam bathymetry data over low resolution bathymetry data for use in modelling approaches. We do not recommend the use of predictive models to produce absolute values of habitat extent, but likely areas of suitable habitat. Assessments of MPA network effectiveness based on calculations of percentage area protection (policy driven conservation targets) from low resolution models are likely to be fit for purpose.

摘要

建模方法有潜力以具有成本效益的方式对深海生态系统的空间管理做出重大贡献。然而,我们目前对使用有限数据、分辨率各异所开发的此类模型的准确性了解甚少。本研究的目的是调查使用不同分辨率的非模拟(真实世界)数据构建的预测模型的性能。利用高分辨率多波束测深数据及相关地形衍生变量作为预测因子,采用最大熵建模方法构建了三种深海栖息地的预测分布图。使用AUC和阈值相关评估方法,通过重复的75/25训练/测试数据划分来评估模型性能。对每个栖息地的总体范围和分布以及现有海洋保护区网络内所含的百分比进行了量化,并与低分辨率通用海道测量数据库(GEBCO)模型的结果进行了比较。造礁石珊瑚礁和脆弱艾氏苔藓虫聚集体的预测空间范围随模型分辨率的提高而减小,而腕海绵的总适宜面积则增加。在所有三种栖息地中都观察到了预测栖息地分布的明显差异。当在精细尺度上建模时,海洋保护区网络内所含栖息地范围的估计值均有所增加。根据阈值相关评估,高分辨率模型比低分辨率模型表现更好。我们建议在建模方法中使用高分辨率多波束测深数据而非低分辨率测深数据。我们不建议使用预测模型来得出栖息地范围的绝对值,而应得出适宜栖息地的可能区域。基于低分辨率模型的面积保护百分比(政策驱动的保护目标)计算对海洋保护区网络有效性的评估可能是适用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/4619891/2e523e25cae3/pone.0140061.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验