Suppr超能文献

鼻内镜图像三维重建中用于特征匹配技术的模糊分区

Fuzzy zoning for feature matching technique in 3D reconstruction of nasal endoscopic images.

作者信息

Rattanalappaiboon Surapong, Bhongmakapat Thongchai, Ritthipravat Panrasee

机构信息

Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, Thailand.

Department of Otolaryngology, Faculty of Medicine, Ramathibodi Hospital, Bangkok, Thailand.

出版信息

Comput Biol Med. 2015 Dec 1;67:83-94. doi: 10.1016/j.compbiomed.2015.09.021. Epub 2015 Oct 9.

Abstract

3D reconstruction from nasal endoscopic images greatly supports an otolaryngologist in examining nasal passages, mucosa, polyps, sinuses, and nasopharyx. In general, structure from motion is a popular technique. It consists of four main steps; (1) camera calibration, (2) feature extraction, (3) feature matching, and (4) 3D reconstruction. Scale Invariant Feature Transform (SIFT) algorithm is normally used for both feature extraction and feature matching. However, SIFT algorithm relatively consumes computational time particularly in the feature matching process because each feature in an image of interest is compared with all features in the subsequent image in order to find the best matched pair. A fuzzy zoning approach is developed for confining feature matching area. Matching between two corresponding features from different images can be efficiently performed. With this approach, it can greatly reduce the matching time. The proposed technique is tested with endoscopic images created from phantoms and compared with the original SIFT technique in terms of the matching time and average errors of the reconstructed models. Finally, original SIFT and the proposed fuzzy-based technique are applied to 3D model reconstruction of real nasal cavity based on images taken from a rigid nasal endoscope. The results showed that the fuzzy-based approach was significantly faster than traditional SIFT technique and provided similar quality of the 3D models. It could be used for creating a nasal cavity taken by a rigid nasal endoscope.

摘要

从鼻内镜图像进行三维重建极大地辅助了耳鼻喉科医生检查鼻道、黏膜、息肉、鼻窦和鼻咽部。一般来说,基于运动的结构是一种常用技术。它包括四个主要步骤:(1)相机校准,(2)特征提取,(3)特征匹配,以及(4)三维重建。尺度不变特征变换(SIFT)算法通常用于特征提取和特征匹配。然而,SIFT算法相对耗费计算时间,特别是在特征匹配过程中,因为感兴趣图像中的每个特征都要与后续图像中的所有特征进行比较,以找到最佳匹配对。为限制特征匹配区域开发了一种模糊分区方法。可以高效地执行不同图像中两个对应特征之间的匹配。通过这种方法,可以大大减少匹配时间。用从模型创建的内镜图像对所提出的技术进行测试,并在匹配时间和重建模型的平均误差方面与原始SIFT技术进行比较。最后,将原始SIFT和所提出的基于模糊的技术应用于基于刚性鼻内镜拍摄图像的真实鼻腔三维模型重建。结果表明,基于模糊的方法比传统SIFT技术显著更快,并且提供了相似质量的三维模型。它可用于创建由刚性鼻内镜拍摄的鼻腔。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验