Filareto Antonio, Rinaldi Fabrizio, Arpke Robert W, Darabi Radbod, Belanto Joseph J, Toso Erik A, Miller Auston Z, Ervasti James M, McIvor R Scott, Kyba Michael, Perlingeiro Rita Cr
Department of Medicine, Lillehei Heart Institute, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455 USA.
Department of Pediatrics, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455 USA.
Skelet Muscle. 2015 Oct 26;5:36. doi: 10.1186/s13395-015-0061-7. eCollection 2015.
Satellite cells (SCs) are indispensable for muscle regeneration and repair; however, due to low frequency in primary muscle and loss of engraftment potential after ex vivo expansion, their use in cell therapy is currently unfeasible. To date, an alternative to this limitation has been the transplantation of SC-derived myogenic progenitor cells (MPCs), although these do not hold the same attractive properties of stem cells, such as self-renewal and long-term regenerative potential.
We develop a method to expand wild-type and dystrophic fresh isolated satellite cells using transient expression of Pax3. This approach can be combined with genetic correction of dystrophic satellite cells and utilized to promote muscle regeneration when transplanted into dystrophic mice.
Here, we show that SCs from wild-type and dystrophic mice can be expanded in culture through transient expression of Pax3, and these expanded activated SCs can regenerate the muscle. We test this approach in a gene therapy model by correcting dystrophic SCs from a mouse lacking dystrophin using a Sleeping Beauty transposon carrying the human μDYSTROPHIN gene. Transplantation of these expanded corrected cells into immune-deficient, dystrophin-deficient mice generated large numbers of dystrophin-expressing myofibers and improved contractile strength. Importantly, in vitro expanded SCs engrafted the SC compartment and could regenerate muscle after secondary injury.
These results demonstrate that Pax3 is able to promote the ex vivo expansion of SCs while maintaining their stem cell regenerative properties.
卫星细胞(SCs)对于肌肉再生和修复不可或缺;然而,由于其在原代肌肉中的频率较低,以及体外扩增后植入潜力的丧失,目前它们在细胞治疗中的应用尚不可行。迄今为止,尽管SC衍生的肌源性祖细胞(MPCs)不具备干细胞的相同诱人特性,如自我更新和长期再生潜力,但它们已成为克服这一限制的替代方法。
我们开发了一种利用Pax3的瞬时表达来扩增野生型和营养不良性新鲜分离卫星细胞的方法。这种方法可以与营养不良性卫星细胞的基因校正相结合,并在移植到营养不良小鼠体内时用于促进肌肉再生。
在这里,我们表明野生型和营养不良小鼠的SCs可以通过Pax3的瞬时表达在培养中扩增,并且这些扩增的活化SCs可以使肌肉再生。我们在基因治疗模型中测试了这种方法,通过使用携带人μ-抗肌萎缩蛋白基因的睡美人转座子校正来自缺乏抗肌萎缩蛋白的小鼠的营养不良性SCs。将这些扩增的校正细胞移植到免疫缺陷、抗肌萎缩蛋白缺陷的小鼠体内,产生了大量表达抗肌萎缩蛋白的肌纤维,并提高了收缩强度。重要的是,体外扩增的SCs植入了卫星细胞区室,并且在二次损伤后能够使肌肉再生。
这些结果表明,Pax3能够促进SCs的体外扩增,同时保持其干细胞再生特性。