Suppr超能文献

将单一多靶点药物转化为细胞内激酶活性的选择性双价抑制剂

Conversion of a Single Polypharmacological Agent into Selective Bivalent Inhibitors of Intracellular Kinase Activity.

作者信息

Gower Carrie M, Thomas Jason R, Harrington Edmund, Murphy Jason, Chang Matthew E K, Cornella-Taracido Ivan, Jain Rishi K, Schirle Markus, Maly Dustin J

机构信息

Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States.

出版信息

ACS Chem Biol. 2016 Jan 15;11(1):121-31. doi: 10.1021/acschembio.5b00847. Epub 2015 Nov 6.

Abstract

Loss-of-function studies are valuable for elucidating kinase function and the validation of new drug targets. While genetic techniques, such as RNAi and genetic knockouts, are highly specific and easy to implement, in many cases post-translational perturbation of kinase activity, specifically pharmacological inhibition, is preferable. However, due to the high degree of structural similarity between kinase active sites and the large size of the kinome, identification of pharmacological agents that are sufficiently selective to probe the function of a specific kinase of interest is challenging, and there is currently no systematic method for accomplishing this goal. Here, we present a modular chemical genetic strategy that uses antibody mimetics as highly selective targeting components of bivalent kinase inhibitors. We demonstrate that it is possible to confer high kinase selectivity to a promiscuous ATP-competitive inhibitor by tethering it to an antibody mimetic fused to the self-labeling protein SNAPtag. With this approach, a potent bivalent inhibitor of the tyrosine kinase Abl was generated. Profiling in complex cell lysates, with competition-based quantitative chemical proteomics, revealed that this bivalent inhibitor possesses greatly enhanced selectivity for its target, BCR-Abl, in K562 cells. Importantly, we show that both components of the bivalent inhibitor can be assembled in K562 cells to block the ability of BCR-Abl to phosphorylate a direct cellular substrate. Finally, we demonstrate the generality of using antibody mimetics as components of bivalent inhibitors by generating a reagent that is selective for the activated state of the serine/threonine kinase ERK2.

摘要

功能丧失研究对于阐明激酶功能和验证新的药物靶点具有重要价值。虽然RNA干扰和基因敲除等基因技术具有高度特异性且易于实施,但在许多情况下,激酶活性的翻译后扰动,特别是药理学抑制,更为可取。然而,由于激酶活性位点之间的高度结构相似性以及激酶组的庞大规模,鉴定出足够选择性以探究特定感兴趣激酶功能的药理学试剂具有挑战性,目前尚无实现这一目标的系统方法。在此,我们提出一种模块化化学遗传策略,该策略使用抗体模拟物作为二价激酶抑制剂的高度选择性靶向成分。我们证明,通过将一种混杂的ATP竞争性抑制剂与融合到自标记蛋白SNAPtag的抗体模拟物相连,可以赋予其对激酶的高选择性。采用这种方法,生成了一种有效的酪氨酸激酶Abl二价抑制剂。基于竞争的定量化学蛋白质组学在复杂细胞裂解物中的分析表明,这种二价抑制剂在K562细胞中对其靶点BCR-Abl具有大大增强的选择性。重要的是,我们表明二价抑制剂的两个成分都可以在K562细胞中组装,以阻断BCR-Abl磷酸化直接细胞底物的能力。最后,我们通过生成一种对丝氨酸/苏氨酸激酶ERK2的活化状态具有选择性的试剂,证明了使用抗体模拟物作为二价抑制剂成分的通用性。

相似文献

1
Conversion of a Single Polypharmacological Agent into Selective Bivalent Inhibitors of Intracellular Kinase Activity.
ACS Chem Biol. 2016 Jan 15;11(1):121-31. doi: 10.1021/acschembio.5b00847. Epub 2015 Nov 6.
4
Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells.
Leukemia. 2009 Mar;23(3):477-85. doi: 10.1038/leu.2008.334. Epub 2008 Nov 27.
5
Design and synthesis of 3-substituted benzamide derivatives as Bcr-Abl kinase inhibitors.
Bioorg Med Chem Lett. 2006 Mar 1;16(5):1421-5. doi: 10.1016/j.bmcl.2005.11.042. Epub 2005 Dec 5.
7
Expanding the structural diversity of Bcr-Abl inhibitors: Hybrid molecules based on GNF-2 and Imatinib.
Bioorg Med Chem Lett. 2015 Oct 1;25(19):4164-8. doi: 10.1016/j.bmcl.2015.08.013. Epub 2015 Aug 8.
8
Discovery of novel Bcr-Abl inhibitors targeting myristoyl pocket and ATP site.
Bioorg Med Chem. 2014 Dec 15;22(24):6876-84. doi: 10.1016/j.bmc.2014.10.030. Epub 2014 Oct 27.
9
Design, synthesis and biological evaluation of novel acrylamide analogues as inhibitors of BCR-ABL kinase.
Bioorg Med Chem Lett. 2012 Aug 15;22(16):5279-82. doi: 10.1016/j.bmcl.2012.06.044. Epub 2012 Jun 21.

引用本文的文献

1
Protein Engineering and High-Throughput Screening by Yeast Surface Display: Survey of Current Methods.
Small Sci. 2023 Dec;3(12). doi: 10.1002/smsc.202300095. Epub 2023 Nov 8.
2
Systematic Evaluation of Protein-Small Molecule Hybrids on the Yeast Surface.
ACS Chem Biol. 2024 Feb 16;19(2):325-335. doi: 10.1021/acschembio.3c00524. Epub 2024 Jan 17.
4
Engineered protein-small molecule conjugates empower selective enzyme inhibition.
Cell Chem Biol. 2022 Feb 17;29(2):328-338.e4. doi: 10.1016/j.chembiol.2021.07.013. Epub 2021 Aug 6.
5
BET bromodomain inhibitors regulate keratinocyte plasticity.
Nat Chem Biol. 2021 Mar;17(3):280-290. doi: 10.1038/s41589-020-00716-z. Epub 2021 Jan 18.
6
A mass spectrometry-based proteome map of drug action in lung cancer cell lines.
Nat Chem Biol. 2020 Oct;16(10):1111-1119. doi: 10.1038/s41589-020-0572-3. Epub 2020 Jul 20.
7
Subcellular drug targeting illuminates local kinase action.
Elife. 2019 Dec 24;8:e52220. doi: 10.7554/eLife.52220.
8
CPSF3-dependent pre-mRNA processing as a druggable node in AML and Ewing's sarcoma.
Nat Chem Biol. 2020 Jan;16(1):50-59. doi: 10.1038/s41589-019-0424-1. Epub 2019 Dec 9.
9
A High Content Screen in Macrophages Identifies Small Molecule Modulators of STING-IRF3 and NFkB Signaling.
ACS Chem Biol. 2018 Apr 20;13(4):1066-1081. doi: 10.1021/acschembio.7b01060. Epub 2018 Mar 19.
10
Quantitative, Wide-Spectrum Kinase Profiling in Live Cells for Assessing the Effect of Cellular ATP on Target Engagement.
Cell Chem Biol. 2018 Feb 15;25(2):206-214.e11. doi: 10.1016/j.chembiol.2017.10.010. Epub 2017 Nov 22.

本文引用的文献

1
Exquisitely specific bisubstrate inhibitors of c-Src kinase.
ACS Chem Biol. 2015 Jun 19;10(6):1387-91. doi: 10.1021/cb501048b. Epub 2015 Mar 31.
2
New affinity probe targeting VEGF receptors for kinase inhibitor selectivity profiling by chemical proteomics.
J Proteome Res. 2014 May 2;13(5):2445-52. doi: 10.1021/pr401247t. Epub 2014 Apr 22.
3
Bivalent inhibitors of protein kinases.
Crit Rev Biochem Mol Biol. 2014 Mar-Apr;49(2):102-15. doi: 10.3109/10409238.2013.875513. Epub 2014 Feb 25.
4
A new chemical probe for quantitative proteomic profiling of fibroblast growth factor receptor and its inhibitors.
J Proteomics. 2014 Jan 16;96:44-55. doi: 10.1016/j.jprot.2013.10.031. Epub 2013 Oct 31.
5
Coordinate phosphorylation of multiple residues on single AKT1 and AKT2 molecules.
Oncogene. 2014 Jun 26;33(26):3463-72. doi: 10.1038/onc.2013.301. Epub 2013 Aug 5.
6
Knowledge-based design of a biosensor to quantify localized ERK activation in living cells.
Chem Biol. 2013 Jun 20;20(6):847-56. doi: 10.1016/j.chembiol.2013.04.016.
8
Chemical proteomic analysis reveals the drugability of the kinome of Trypanosoma brucei.
ACS Chem Biol. 2012 Nov 16;7(11):1858-65. doi: 10.1021/cb300326z. Epub 2012 Aug 23.
9
Structural and functional analysis of phosphorylation-specific binders of the kinase ERK from designed ankyrin repeat protein libraries.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):E2248-57. doi: 10.1073/pnas.1205399109. Epub 2012 Jul 27.
10
Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors.
Nat Biotechnol. 2012 Feb 19;30(3):283-8. doi: 10.1038/nbt.2121.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验