Bielecki Jakub, Lipiec Ewelina
1 Institute of Nuclear Physics Polish Academy of Sciences, PL-31-342 Krakow, Poland.
J Bioinform Comput Biol. 2016 Feb;14(1):1650002. doi: 10.1142/S0219720016500025. Epub 2015 Sep 16.
Raman spectroscopy (including surface enhanced Raman spectroscopy (SERS) and tip enhanced Raman spectroscopy (TERS)) is a highly promising experimental method for investigations of biomolecule damage induced by ionizing radiation. However, proper interpretation of changes in experimental spectra for complex systems is often difficult or impossible, thus Raman spectra calculations based on density functional theory (DFT) provide an invaluable tool as an additional layer of understanding of underlying processes. There are many works that address the problem of basis set dependence for energy and bond length consideration, nevertheless there is still lack of consistent research on basis set influence on Raman spectra intensities for biomolecules. This study fills this gap by investigating of the influence of basis set choice for the interpretation of Raman spectra of the thymine molecule calculated using the DFT/B3LYP framework and comparing these results with experimental spectra. Among 19 selected Pople's basis sets, the best agreement was achieved using 6-31Formula: see text, 6-31Formula: see text and 6-11[Formula: see text]G(d,p) sets. Adding diffuse functions or polarized functions for small basis set or use of a medium or large basis set without diffuse or polarized functions is not sufficient to reproduce Raman intensities correctly. The introduction of the diffuse functions ([Formula: see text]) on hydrogen atoms is not necessary for gas phase calculations. This work serves as a benchmark for further research on the interaction of ionizing radiation with DNA molecules by means of ab initio calculations and Raman spectroscopy. Moreover, this work provides a set of new scaling factors for Raman spectra calculation in the framework of DFT/B3LYP method.
拉曼光谱(包括表面增强拉曼光谱(SERS)和针尖增强拉曼光谱(TERS))是一种极具前景的实验方法,用于研究电离辐射引起的生物分子损伤。然而,对于复杂系统实验光谱变化的合理解读往往困难甚至无法实现,因此基于密度泛函理论(DFT)的拉曼光谱计算作为深入理解潜在过程的额外手段,提供了一个宝贵的工具。有许多工作探讨了基组对能量和键长考虑的依赖性问题,然而,对于基组对生物分子拉曼光谱强度的影响仍缺乏一致的研究。本研究通过研究在DFT/B3LYP框架下计算胸腺嘧啶分子拉曼光谱时基组选择的影响,并将这些结果与实验光谱进行比较,填补了这一空白。在19个选定的波普尔基组中,使用6-31公式:见原文、6-31公式:见原文和6-11[公式:见原文]G(d,p)基组时取得了最佳一致性。对于小基组添加弥散函数或极化函数,或者使用没有弥散或极化函数的中等或大基组,都不足以正确再现拉曼强度。对于气相计算,在氢原子上引入弥散函数([公式:见原文])并非必要。这项工作为通过从头算和拉曼光谱进一步研究电离辐射与DNA分子的相互作用提供了一个基准。此外,这项工作在DFT/B3LYP方法框架下提供了一组用于拉曼光谱计算的新标度因子。