Suppr超能文献

14-3-3蛋白调节突变型亮氨酸-rich重复激酶2(LRRK2)的激酶活性并缩短神经突。

14-3-3 Proteins regulate mutant LRRK2 kinase activity and neurite shortening.

作者信息

Lavalley Nicholas J, Slone Sunny R, Ding Huiping, West Andrew B, Yacoubian Talene A

机构信息

Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA

出版信息

Hum Mol Genet. 2016 Jan 1;25(1):109-22. doi: 10.1093/hmg/ddv453. Epub 2015 Nov 5.

Abstract

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common known cause of inherited Parkinson's disease (PD), and LRRK2 is a risk factor for idiopathic PD. How LRRK2 function is regulated is not well understood. Recently, the highly conserved 14-3-3 proteins, which play a key role in many cellular functions including cell death, have been shown to interact with LRRK2. In this study, we investigated whether 14-3-3s can regulate mutant LRRK2-induced neurite shortening and kinase activity. In the presence of 14-3-3θ overexpression, neurite length of primary neurons from BAC transgenic G2019S-LRRK2 mice returned back to wild-type levels. Similarly, 14-3-3θ overexpression reversed neurite shortening in neuronal cultures from BAC transgenic R1441G-LRRK2 mice. Conversely, inhibition of 14-3-3s by the pan-14-3-3 inhibitor difopein or dominant-negative 14-3-3θ further reduced neurite length in G2019S-LRRK2 cultures. Since G2019S-LRRK2 toxicity is likely mediated through increased kinase activity, we examined 14-3-3θ's effects on LRRK2 kinase activity. 14-3-3θ overexpression reduced the kinase activity of G2019S-LRRK2, while difopein promoted the kinase activity of G2019S-LRRK2. The ability of 14-3-3θ to reduce LRRK2 kinase activity required direct binding of 14-3-3θ with LRRK2. The potentiation of neurite shortening by difopein in G2019S-LRRK2 neurons was reversed by LRRK2 kinase inhibitors. Taken together, we conclude that 14-3-3θ can regulate LRRK2 and reduce the toxicity of mutant LRRK2 through a reduction of kinase activity.

摘要

富含亮氨酸重复激酶2(LRRK2)的突变是已知遗传性帕金森病(PD)最常见的病因,且LRRK2是特发性PD的一个风险因素。LRRK2的功能是如何被调节的目前还不太清楚。最近,高度保守的14-3-3蛋白在包括细胞死亡在内的许多细胞功能中起关键作用,已被证明可与LRRK2相互作用。在本研究中,我们调查了14-3-3蛋白是否能调节突变型LRRK2诱导的神经突缩短和激酶活性。在14-3-3θ过表达的情况下,BAC转基因G2019S-LRRK2小鼠原代神经元的神经突长度恢复到野生型水平。同样,14-3-3θ过表达逆转了BAC转基因R1441G-LRRK2小鼠神经元培养物中的神经突缩短。相反,泛14-3-3抑制剂二氟泼因或显性负性14-3-3θ对14-3-3蛋白的抑制进一步缩短了G2019S-LRRK2培养物中的神经突长度。由于G2019S-LRRK2毒性可能是通过增加激酶活性介导的,我们研究了14-3-3θ对LRRK2激酶活性的影响。14-3-3θ过表达降低了G2019S-LRRK2的激酶活性,而二氟泼因则促进了G2019S-LRRK2的激酶活性。14-3-3θ降低LRRK2激酶活性的能力需要14-3-3θ与LRRK2直接结合。LRRK2激酶抑制剂逆转了二氟泼因在G2019S-LRRK2神经元中增强神经突缩短的作用。综上所述,我们得出结论,14-3-3θ可以调节LRRK2,并通过降低激酶活性来降低突变型LRRK2的毒性。

相似文献

1
14-3-3 Proteins regulate mutant LRRK2 kinase activity and neurite shortening.
Hum Mol Genet. 2016 Jan 1;25(1):109-22. doi: 10.1093/hmg/ddv453. Epub 2015 Nov 5.
2
14-3-3 phosphorylation inhibits 14-3-3θ's ability to regulate LRRK2 kinase activity and toxicity.
Hum Mol Genet. 2024 Nov 20;33(23):2071-2083. doi: 10.1093/hmg/ddae142.
3
14-3-3 phosphorylation inhibits 14-3-3θ's ability to regulate LRRK2 kinase activity.
bioRxiv. 2023 May 30:2023.05.27.542591. doi: 10.1101/2023.05.27.542591.
4
Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation.
Hum Mol Genet. 2013 Nov 15;22(22):4545-61. doi: 10.1093/hmg/ddt301. Epub 2013 Jun 27.
5
Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells.
J Neurochem. 2008 May;105(3):1048-56. doi: 10.1111/j.1471-4159.2008.05217.x. Epub 2008 Jan 7.
7
GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1.
PLoS Genet. 2012;8(2):e1002526. doi: 10.1371/journal.pgen.1002526. Epub 2012 Feb 9.
10
Increased 14-3-3 phosphorylation observed in Parkinson's disease reduces neuroprotective potential of 14-3-3 proteins.
Neurobiol Dis. 2015 Jul;79:1-13. doi: 10.1016/j.nbd.2015.02.032. Epub 2015 Apr 8.

引用本文的文献

1
A novel 14-3-3θ phosphomimetic mouse model demonstrates social dominance defects.
Biol Open. 2025 Jun 15;14(6). doi: 10.1242/bio.061963. Epub 2025 Jun 10.
2
14-3-3 phosphorylation inhibits 14-3-3θ's ability to regulate LRRK2 kinase activity and toxicity.
Hum Mol Genet. 2024 Nov 20;33(23):2071-2083. doi: 10.1093/hmg/ddae142.
3
Fragment-Based Interrogation of the 14-3-3/TAZ Protein-Protein Interaction.
Biochemistry. 2024 Sep 3;63(17):2196-2206. doi: 10.1021/acs.biochem.4c00248. Epub 2024 Aug 22.
5
How Parkinson's Disease-Linked LRRK2 Mutations Affect Different CNS Cell Types.
J Parkinsons Dis. 2024;14(7):1331-1352. doi: 10.3233/JPD-230432.
6
8
Promising biomarkers and therapeutic targets for the management of Parkinson's disease: recent advancements and contemporary research.
Metab Brain Dis. 2023 Mar;38(3):873-919. doi: 10.1007/s11011-023-01180-z. Epub 2023 Feb 20.
9
14-3-3θ Does Not Protect against Behavioral or Pathological Deficits in Alzheimer's Disease Mouse Models.
eNeuro. 2022 Jun 24;9(3). doi: 10.1523/ENEURO.0368-21.2022. Print 2022 May-Jun.

本文引用的文献

2
Increased 14-3-3 phosphorylation observed in Parkinson's disease reduces neuroprotective potential of 14-3-3 proteins.
Neurobiol Dis. 2015 Jul;79:1-13. doi: 10.1016/j.nbd.2015.02.032. Epub 2015 Apr 8.
3
Mortality in Parkinson's disease: a systematic review and meta-analysis.
Mov Disord. 2014 Nov;29(13):1615-22. doi: 10.1002/mds.25898. Epub 2014 May 13.
4
14-3-3 proteins are required for hippocampal long-term potentiation and associative learning and memory.
J Neurosci. 2014 Apr 2;34(14):4801-8. doi: 10.1523/JNEUROSCI.4393-13.2014.
5
Mortality in levodopa-treated Parkinson's disease.
Parkinsons Dis. 2014;2014:426976. doi: 10.1155/2014/426976. Epub 2014 Jan 28.
6
7
Parkinson-related LRRK2 mutation R1441C/G/H impairs PKA phosphorylation of LRRK2 and disrupts its interaction with 14-3-3.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E34-43. doi: 10.1073/pnas.1312701111. Epub 2013 Dec 18.
8
A direct interaction between leucine-rich repeat kinase 2 and specific β-tubulin isoforms regulates tubulin acetylation.
J Biol Chem. 2014 Jan 10;289(2):895-908. doi: 10.1074/jbc.M113.507913. Epub 2013 Nov 25.
9
14-3-3ε and NAV2 interact to regulate neurite outgrowth and axon elongation.
Arch Biochem Biophys. 2013 Dec;540(1-2):94-100. doi: 10.1016/j.abb.2013.10.012. Epub 2013 Oct 23.
10
Identification of protein phosphatase 1 as a regulator of the LRRK2 phosphorylation cycle.
Biochem J. 2013 Nov 15;456(1):119-28. doi: 10.1042/BJ20121772.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验