Lavalley Nicholas J, Slone Sunny R, Ding Huiping, West Andrew B, Yacoubian Talene A
Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
Hum Mol Genet. 2016 Jan 1;25(1):109-22. doi: 10.1093/hmg/ddv453. Epub 2015 Nov 5.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common known cause of inherited Parkinson's disease (PD), and LRRK2 is a risk factor for idiopathic PD. How LRRK2 function is regulated is not well understood. Recently, the highly conserved 14-3-3 proteins, which play a key role in many cellular functions including cell death, have been shown to interact with LRRK2. In this study, we investigated whether 14-3-3s can regulate mutant LRRK2-induced neurite shortening and kinase activity. In the presence of 14-3-3θ overexpression, neurite length of primary neurons from BAC transgenic G2019S-LRRK2 mice returned back to wild-type levels. Similarly, 14-3-3θ overexpression reversed neurite shortening in neuronal cultures from BAC transgenic R1441G-LRRK2 mice. Conversely, inhibition of 14-3-3s by the pan-14-3-3 inhibitor difopein or dominant-negative 14-3-3θ further reduced neurite length in G2019S-LRRK2 cultures. Since G2019S-LRRK2 toxicity is likely mediated through increased kinase activity, we examined 14-3-3θ's effects on LRRK2 kinase activity. 14-3-3θ overexpression reduced the kinase activity of G2019S-LRRK2, while difopein promoted the kinase activity of G2019S-LRRK2. The ability of 14-3-3θ to reduce LRRK2 kinase activity required direct binding of 14-3-3θ with LRRK2. The potentiation of neurite shortening by difopein in G2019S-LRRK2 neurons was reversed by LRRK2 kinase inhibitors. Taken together, we conclude that 14-3-3θ can regulate LRRK2 and reduce the toxicity of mutant LRRK2 through a reduction of kinase activity.
富含亮氨酸重复激酶2(LRRK2)的突变是已知遗传性帕金森病(PD)最常见的病因,且LRRK2是特发性PD的一个风险因素。LRRK2的功能是如何被调节的目前还不太清楚。最近,高度保守的14-3-3蛋白在包括细胞死亡在内的许多细胞功能中起关键作用,已被证明可与LRRK2相互作用。在本研究中,我们调查了14-3-3蛋白是否能调节突变型LRRK2诱导的神经突缩短和激酶活性。在14-3-3θ过表达的情况下,BAC转基因G2019S-LRRK2小鼠原代神经元的神经突长度恢复到野生型水平。同样,14-3-3θ过表达逆转了BAC转基因R1441G-LRRK2小鼠神经元培养物中的神经突缩短。相反,泛14-3-3抑制剂二氟泼因或显性负性14-3-3θ对14-3-3蛋白的抑制进一步缩短了G2019S-LRRK2培养物中的神经突长度。由于G2019S-LRRK2毒性可能是通过增加激酶活性介导的,我们研究了14-3-3θ对LRRK2激酶活性的影响。14-3-3θ过表达降低了G2019S-LRRK2的激酶活性,而二氟泼因则促进了G2019S-LRRK2的激酶活性。14-3-3θ降低LRRK2激酶活性的能力需要14-3-3θ与LRRK2直接结合。LRRK2激酶抑制剂逆转了二氟泼因在G2019S-LRRK2神经元中增强神经突缩短的作用。综上所述,我们得出结论,14-3-3θ可以调节LRRK2,并通过降低激酶活性来降低突变型LRRK2的毒性。