Ma Zhi-Zhao, Fan Lin, Huang Jun-Ling, Pan Xiao-Jing
Department of Neurosurgery, The Second Hospital of Hebei Medical University Shijiazhuang, Hebei Province 050000, P.R. China.
Tongji University Medical School Siping Road 1239, Yangpu District 200092, Shanghai, P.R. China.
Int J Clin Exp Med. 2015 Aug 15;8(8):12834-41. eCollection 2015.
Neural stem cells (NSCs) are multi-potent stem cells able to self-renew and generate immature and differentiated cell populations by asymmetric division. The NSCs are of considerable interest for cell replacement in neuro-degenerative diseases. NSCs are usually identified and expanded by their ability to generate free-floating aggregates termed neurospheres. However, neurospheres are not a pure population of NSCs with as little as 1% population in primary spheres. Neurospheres also contain neurons, astrocytes and oligodendrocytes. The heterogeneity of these cells may hinder their repopulation potential when used in cell transplantation. Furthermore, to obtain 1 million NSCs by the neurosphere protocol usually takes one month, which is inconvenient for future clinical trials. In this study, we tried to derive the NSCs from mice embryo neuroepithelium without neurosphere formation. Three different protocols were compared. We generated a direct and efficient NSCs generation, expanding and freezing protocol. This protocol can provide sufficient amount of the NSCs from first a few passages for cell transplantation.