Noureen Nighat, Touseef Muhammad, Fazal Sahar, Qadir Muhammad Abdul
Department of Bioinformatics and Biosciences, Mohammad Ali Jinnah University, Islamabad, Pakistan; Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.
Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.
Genomics. 2015 Dec;106(6):355-9. doi: 10.1016/j.ygeno.2015.11.002. Epub 2015 Nov 6.
Mining patterns of histone modifications interplay from epigenomic profiles are one of the leading research areas these days. Various methods based on clustering approaches and hidden Markov models have been presented so far with some limitations. Here we present ChromClust, a semi-supervised clustering tool for mining commonly occurring histone modifications at various locations of the genome. Applying our method to 11 chromatin marks in nine human cell types recovered 11 clusters based on distinct chromatin signatures mapping to various elements of the genome. Our approach is efficient in respect to time and space usage along with the added facility of maintaining database at the backend. It outperforms the existing methods with respect to mining patterns in a semi-supervised fashion mapping to various functional elements of the genome. It will aid in future by saving the resources of time and space along with efficiently retrieving the hidden interplay of histone combinations.
从表观基因组图谱中挖掘组蛋白修饰相互作用模式是当今前沿研究领域之一。到目前为止,已经提出了各种基于聚类方法和隐马尔可夫模型的方法,但都存在一些局限性。在此,我们展示了ChromClust,这是一种半监督聚类工具,用于挖掘基因组不同位置常见的组蛋白修饰。将我们的方法应用于九种人类细胞类型中的11种染色质标记,基于映射到基因组各种元件的不同染色质特征恢复了11个聚类。我们的方法在时间和空间使用方面效率很高,并且在后端具备维护数据库的附加功能。在以半监督方式映射到基因组各种功能元件的挖掘模式方面,它优于现有方法。它将有助于在未来节省时间和空间资源,同时有效地检索组蛋白组合的隐藏相互作用。