Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City 3200003, Haifa, Israel.
Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina; National Science Research Council (CONICET), Buenos Aires, Argentina.
Colloids Surf B Biointerfaces. 2015 Dec 1;136:900-7. doi: 10.1016/j.colsurfb.2015.10.036. Epub 2015 Oct 30.
Thermo-sensitive graft copolymer amphiphiles of chitosan (CS) and poly(N-isopropylacrylamide) (PNiPAAm), CS-g-PNIPAAm, were successfully synthesized by a catalyst-less one-pot gamma (γ)-radiation-assisted free radical polymerization at three different radiation doses: 5, 10 and 20 kGy. The chemical structure of the copolymers was confirmed by FTIR and solid-state (13)C NMR and the grafting extent by (1)H NMR and gravimetric analysis. In general, the higher the dose, the smaller the grafting due to the more significant NiPAAm homopolymerization. Due to the grafting of poly(NiPAAm) blocks, aqueous solutions of the different copolymers underwent a sharp transition upon heating above 32 °C, the characteristic lower critical solution temperature (LCST) of poly(NiPAAm). Then, the critical micellar concentration (CMC), the size and size distribution and the zeta-potential were characterized by dynamic light scattering (DLS) and the polymeric micelles visualized in suspension and quantified by Nanoparticle Tracking Analysis (NTA), at 37 °C. CMC values were in the 0.0012-0.0025%w/v range and micelles displayed sizes between 99 and 203 nm with low polydispersity (<0.160) and highly positive zeta-potential (>+15 mV) that suggested the partial conservation of the amine groups upon NiPAAm grafting. Consequently, polymeric micelles displayed the intrinsic mucoadhesiveness of CS, as established in vitro by the mucin solution assay. Finally, the encapsulation capacity of the micelles was assessed with the highly hydrophobic protease inhibitor antiretroviral indinavir free base (IDV). Polymeric micelles led to a significant 24-fold increase of the aqueous solubility from 63 μg/mL to 1.45 mg/mL, a performance remarkably better than different poly(ethylene oxide)-b-poly(propylene oxide) block copolymers assessed before. Overall results highlight the potential of this nanotechnology platform to expand the application of polymeric micelles to mucosal administration routes.
壳聚糖(CS)和聚(N-异丙基丙烯酰胺)(PNiPAAm)的温敏接枝共聚物两亲物 CS-g-PNIPAAm 通过无催化剂的一锅γ(γ)射线辅助自由基聚合在三个不同的辐射剂量下成功合成:5、10 和 20 kGy。通过傅里叶变换红外光谱(FTIR)和固态(13)C NMR 确认共聚物的化学结构,并通过(1)H NMR 和重量分析确认接枝程度。一般来说,剂量越高,由于 NiPAAm 均聚物的程度越高,接枝越小。由于聚(NiPAAm)嵌段的接枝,不同共聚物的水溶液在加热到 32°C 以上时会发生急剧转变,即聚(NiPAAm)的特征低临界溶液温度(LCST)。然后,通过动态光散射(DLS)对临界胶束浓度(CMC)、粒径和粒径分布以及zeta 电位进行表征,并通过纳米颗粒跟踪分析(NTA)可视化悬浮液中的聚合物胶束并进行定量,在 37°C 下进行。CMC 值在 0.0012-0.0025%w/v 范围内,胶束显示出 99-203nm 的尺寸,具有低多分散性(<0.160)和高度正的 zeta 电位(>+15 mV),表明 NiPAAm 接枝后部分保留了胺基。因此,聚合物胶束显示出 CS 的固有粘液粘附性,如通过粘蛋白溶液测定体外所建立的那样。最后,通过高度疏水的蛋白酶抑制剂抗逆转录病毒茚地那韦游离碱(IDV)评估了胶束的包封能力。聚合物胶束使水溶解度从 63μg/mL 显著增加到 1.45mg/mL,提高了 24 倍,性能明显优于以前评估的不同聚(环氧乙烷)-b-聚(环氧丙烷)嵌段共聚物。总体结果突出了该纳米技术平台的潜力,可以将聚合物胶束的应用扩展到粘膜给药途径。