Suppr超能文献

纳米颗粒介导的射频电容式热疗:一项使用磁共振测温法的体模研究。

Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry.

作者信息

Kim Ki Soo, Lee Soo Yeol

机构信息

a Department of Biomedical Engineering , Kyung Hee University , Yongin , Korea.

出版信息

Int J Hyperthermia. 2015;31(8):831-9. doi: 10.3109/02656736.2015.1096968. Epub 2015 Nov 10.

Abstract

In hyperthermia, focusing heat generation on tumour tissues and precisely monitoring the temperature around the tumour region is important. To focus heat generation in radiofrequency (RF) capacitive heating, magnetic nanoparticles suspended in sodium carboxymethyl cellulose (CMC) solution were used, based on the hypothesis that the nanoparticle suspension would elevate electrical conductivity and RF current density at the nanoparticle-populated region. A tissue-mimicking phantom with compartments with and without nanoparticles was made for RF capacitive heating experiments. An FDTD model of the phantom was developed to simulate temperature increases at the phantom. To monitor temperature inside the phantom, MR thermometry was performed intermittently during RF heating inside a 3Tesla MRI magnet bore. FDTD simulation on the phantom model was performed in two steps: electromagnetic simulation to compute specific absorption rate and thermal simulation to compute temperature changes. Experimental temperature maps were similar to simulated temperature maps, demonstrating that nanoparticle-populated regions drew more heat than background regions. Nanoparticle-mediated RF heating could mitigate concerns about normal tissue death during RF capacitive hyperthermia.

摘要

在热疗中,将热量产生集中在肿瘤组织上并精确监测肿瘤区域周围的温度非常重要。为了在射频(RF)电容性加热中集中热量产生,基于纳米颗粒悬浮液会提高纳米颗粒聚集区域的电导率和RF电流密度这一假设,使用了悬浮在羧甲基纤维素钠(CMC)溶液中的磁性纳米颗粒。制作了一个具有含纳米颗粒和不含纳米颗粒隔室的仿组织体模用于RF电容性加热实验。开发了该体模的时域有限差分(FDTD)模型来模拟体模中的温度升高。为了监测体模内部的温度,在3特斯拉MRI磁体孔内进行RF加热期间间歇性地进行磁共振测温。对体模模型的FDTD模拟分两步进行:电磁模拟以计算比吸收率,热模拟以计算温度变化。实验温度图与模拟温度图相似,表明纳米颗粒聚集区域比背景区域吸收更多热量。纳米颗粒介导的RF加热可以减轻对RF电容性热疗期间正常组织坏死的担忧。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验