Suppr超能文献

使用搜索区域标准正态变量(SRSNV)对漫反射近红外光谱进行基线校正。

Baseline Correction of Diffuse Reflection Near-Infrared Spectra Using Searching Region Standard Normal Variate (SRSNV).

作者信息

Genkawa Takuma, Shinzawa Hideyuki, Kato Hideaki, Ishikawa Daitaro, Murayama Kodai, Komiyama Makoto, Ozaki Yukihiro

出版信息

Appl Spectrosc. 2015 Dec;69(12):1432-41. doi: 10.1366/15-07905.

Abstract

An alternative baseline correction method for diffuse reflection near-infrared (NIR) spectra, searching region standard normal variate (SRSNV), was proposed. Standard normal variate (SNV) is an effective pretreatment method for baseline correction of diffuse reflection NIR spectra of powder and granular samples; however, its baseline correction performance depends on the NIR region used for SNV calculation. To search for an optimal NIR region for baseline correction using SNV, SRSNV employs moving window partial least squares regression (MWPLSR), and an optimal NIR region is identified based on the root mean square error (RMSE) of cross-validation of the partial least squares regression (PLSR) models with the first latent variable (LV). The performance of SRSNV was evaluated using diffuse reflection NIR spectra of mixture samples consisting of wheat flour and granular glucose (0-100% glucose at 5% intervals). From the obtained NIR spectra of the mixture in the 10 000-4000 cm(-1) region at 4 cm intervals (1501 spectral channels), a series of spectral windows consisting of 80 spectral channels was constructed, and then SNV spectra were calculated for each spectral window. Using these SNV spectra, a series of PLSR models with the first LV for glucose concentration was built. A plot of RMSE versus the spectral window position obtained using the PLSR models revealed that the 8680–8364 cm(-1) region was optimal for baseline correction using SNV. In the SNV spectra calculated using the 8680–8364 cm(-1) region (SRSNV spectra), a remarkable relative intensity change between a band due to wheat flour at 8500 cm(-1) and that due to glucose at 8364 cm(-1) was observed owing to successful baseline correction using SNV. A PLSR model with the first LV based on the SRSNV spectra yielded a determination coefficient (R2) of 0.999 and an RMSE of 0.70%, while a PLSR model with three LVs based on SNV spectra calculated in the full spectral region gave an R2 of 0.995 and an RMSE of 2.29%. Additional evaluation of SRSNV was carried out using diffuse reflection NIR spectra of marzipan and corn samples, and PLSR models based on SRSNV spectra showed good prediction results. These evaluation results indicate that SRSNV is effective in baseline correction of diffuse reflection NIR spectra and provides regression models with good prediction accuracy.

摘要

提出了一种用于漫反射近红外(NIR)光谱的替代基线校正方法——搜索区域标准正态变量(SRSNV)。标准正态变量(SNV)是粉末和颗粒样品漫反射近红外光谱基线校正的有效预处理方法;然而,其基线校正性能取决于用于SNV计算的近红外区域。为了搜索使用SNV进行基线校正的最佳近红外区域,SRSNV采用移动窗口偏最小二乘回归(MWPLSR),并基于具有第一个潜变量(LV)的偏最小二乘回归(PLSR)模型交叉验证的均方根误差(RMSE)来确定最佳近红外区域。使用由小麦粉和颗粒葡萄糖组成的混合样品(葡萄糖含量为0 - 100%,间隔5%)的漫反射近红外光谱评估了SRSNV的性能。从在10000 - 4000 cm⁻¹区域以4 cm间隔(1501个光谱通道)获得的混合物近红外光谱中,构建了一系列由80个光谱通道组成的光谱窗口,然后为每个光谱窗口计算SNV光谱。使用这些SNV光谱,建立了一系列具有第一个LV的用于葡萄糖浓度的PLSR模型。使用PLSR模型获得的RMSE与光谱窗口位置的关系图表明,8680 - 8364 cm⁻¹区域是使用SNV进行基线校正的最佳区域。在使用8680 - 8364 cm⁻¹区域计算的SNV光谱(SRSNV光谱)中,由于使用SNV成功进行了基线校正,观察到8500 cm⁻¹处小麦粉的谱带与8364 cm⁻¹处葡萄糖的谱带之间有明显的相对强度变化。基于SRSNV光谱的具有第一个LV的PLSR模型的决定系数(R²)为0.999,RMSE为0.70%,而基于全光谱区域计算的SNV光谱的具有三个LV的PLSR模型的R²为0.995,RMSE为2.29%。使用杏仁蛋白软糖和玉米样品的漫反射近红外光谱对SRSNV进行了额外评估,基于SRSNV光谱的PLSR模型显示出良好的预测结果。这些评估结果表明,SRSNV在漫反射近红外光谱的基线校正中是有效的,并提供了具有良好预测准确性的回归模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验