Suppr超能文献

植物中的驱动蛋白:从亚细胞动力学至运动调节

Kinesin motors in plants: from subcellular dynamics to motility regulation.

作者信息

Lee Yuh-Ru Julie, Qiu Weihong, Liu Bo

机构信息

Department of Plant Biology, University of California, Davis, CA 95616, USA.

Departments of Physics and Biophysics & Biochemistry, Oregon State University, Covallis, OR 97331, USA.

出版信息

Curr Opin Plant Biol. 2015 Dec;28:120-6. doi: 10.1016/j.pbi.2015.10.003. Epub 2015 Nov 8.

Abstract

Plants produce enormous forms of the microtubule (MT)-based motor kinesins that have been inspiring plant cell biologists to uncover their functions in relation to plant growth and development. Subcellular localization of kinesin proteins detected through live-cell imaging or immunofluorescence microscopy has provided great insights into the functions of these motors. Dozens of mitotic kinesins exhibit particularly splendid localization patterns from chromosomes and kinetochores to MT arrays like the preprophase band, spindle poles, the spindle midzone, phragmoplast distal ends, and the phragmoplast midzone. Different subcellular localizations indicate distinct functions of these motors that are yet to be characterized. The localization difference between plant kinesins and their animal counterparts implies mechanistic differences in mitosis and cytokinesis between the two kingdoms. When many forms of kinesins are present simultaneously, it becomes critical that their motility is differentially regulated with spatial and temporal precision. Insights into regulatory mechanisms of motors can often be brought about by in vitro single-molecule biophysical studies. Significant advances are expected in this area in the coming years owing to rapid technological advances that are being brought to various model plants.

摘要

植物产生了基于微管(MT)的驱动蛋白的多种形式,这一直激励着植物细胞生物学家去揭示它们在植物生长和发育方面的功能。通过活细胞成像或免疫荧光显微镜检测到的驱动蛋白的亚细胞定位,为深入了解这些驱动蛋白的功能提供了很大帮助。数十种有丝分裂驱动蛋白呈现出特别精彩的定位模式,从染色体和动粒到微管阵列,如前期带、纺锤极、纺锤体中区、成膜体远端和成膜体中区。不同的亚细胞定位表明这些驱动蛋白具有尚未被表征的不同功能。植物驱动蛋白与其动物对应物之间的定位差异意味着这两个王国在有丝分裂和胞质分裂过程中的机制差异。当多种形式的驱动蛋白同时存在时,至关重要的是它们的运动性要在空间和时间上得到精确的差异调节。对驱动蛋白调节机制的深入了解通常可以通过体外单分子生物物理研究来实现。由于各种模式植物在技术上的快速进步,预计未来几年在这一领域将取得重大进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验