Huang Ji, Yennie Craig J, Delaney Sarah
Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States.
Chem Res Toxicol. 2015 Dec 21;28(12):2325-33. doi: 10.1021/acs.chemrestox.5b00330. Epub 2015 Nov 24.
Defining the biological consequences of oxidative DNA damage remains an important and ongoing area of investigation. At the foundation of understanding the repercussions of such damage is a molecular-level description of the action of DNA-processing enzymes, such as polymerases. In this work, we focus on a secondary, or hyperoxidized, oxidative lesion of dG that is formed by oxidation of the primary oxidative lesion, 2'-deoxy-8-oxo-7,8-dihydroguanosine (8-oxodG). In particular, we examine incorporation into DNA of the diastereomers of the hyperoxidized guanosine triphosphate lesion spiroiminodihydantoin-2'-deoxynucleoside-5'-triphosphate (dSpTP). Using kinetic parameters, we describe the ability of the Klenow fragment of Escherichia coli DNA polymerase I lacking 3' → 5' exonuclease activity (KF(-)) to utilize (S)-dSpTP and (R)-dSpTP as building blocks during replication. We find that both diastereomers act as covert lesions, similar to a Trojan horse: KF(-) incorporates the lesion dNTP opposite dC, which is a nonmutagenic event; however, during the subsequent replication, it is known that dSp is nearly 100% mutagenic. Nevertheless, using kpol/Kd to define the nucleotide incorporation specificity, we find that the extent of oxidation of the dGTP-derived lesion correlates with its ability to be incorporated into DNA. KF(-) has the highest specificity for incorporation of dGTP opposite dC. The selection factors for incorporating 8-oxodGTP, (S)-dSpTP, and (R)-dSpTP are 1700-, 64000-, and 850000-fold lower, respectively. Thus, KF(-) is rigorous in its discrimination against incorporation of the hyperoxidized lesion, and these results suggest that the specificity of cellular polymerases provides an effective mechanism to avoid incorporating dSpTP lesions into DNA from the nucleotide pool.
确定氧化性DNA损伤的生物学后果仍是一个重要且仍在进行的研究领域。理解此类损伤影响的基础是对DNA加工酶(如聚合酶)作用的分子水平描述。在这项工作中,我们关注由主要氧化性损伤2'-脱氧-8-氧代-7,8-二氢鸟苷(8-氧代dG)氧化形成的dG的二级或超氧化氧化性损伤。特别是,我们研究了超氧化鸟苷三磷酸损伤螺环亚氨基二氢尿嘧啶-2'-脱氧核苷-5'-三磷酸(dSpTP)的非对映异构体掺入DNA的情况。利用动力学参数,我们描述了缺乏3'→5'核酸外切酶活性的大肠杆菌DNA聚合酶I的Klenow片段(KF(-))在复制过程中利用(S)-dSpTP和(R)-dSpTP作为构建模块的能力。我们发现这两种非对映异构体都充当隐蔽性损伤,类似于特洛伊木马:KF(-)在与dC相对处掺入损伤性dNTP,这是一个非诱变事件;然而,在随后的复制过程中,已知dSp几乎100%具有诱变性。尽管如此,用kpol/Kd来定义核苷酸掺入特异性时,我们发现dGTP衍生损伤的氧化程度与其掺入DNA的能力相关。KF(-)在与dC相对处掺入dGTP具有最高特异性。掺入8-氧代dGTP、(S)-dSpTP和(R)-dSpTP的选择因子分别低1700倍、64000倍和850000倍。因此,KF(-)在区分超氧化损伤掺入方面非常严格,这些结果表明细胞聚合酶的特异性提供了一种有效的机制,可避免将dSpTP损伤从核苷酸池中掺入DNA。